83 research outputs found

    Investigation of iris recognition in the visible spectrum

    Get PDF
    mong the biometric systems that have been developed so far, iris recognition systems have emerged as being one of the most reliable. In iris recognition, most of the research was conducted on operation under near infrared illumination. For unconstrained scenarios of iris recognition systems, the iris images are captured under visible light spectrum and therefore incorporate various types of imperfections. In this thesis the merits of fusing information from various sources for improving the state of the art accuracies of colour iris recognition systems is evaluated. An investigation of how fundamentally different fusion strategies can increase the degree of choice available in achieving certain performance criteria is conducted. Initially, simple fusion mechanisms are employed to increase the accuracy of an iris recognition system and then more complex fusion architectures are elaborated to further enhance the biometric system’s accuracy. In particular, the design process of the iris recognition system with reduced constraints is carried out using three different fusion approaches: multi-algorithmic, texture and colour fusion and multiple classifier systems. In the first approach, one novel iris feature extraction methodology is proposed and a multi-algorithmic iris recognition system using score fusion, composed of 3 individual systems, is benchmarked. In the texture and colour fusion approach, the advantages of fusing information from the iris texture with data extracted from the eye colour are illustrated. Finally, the multiple classifier systems approach investigates how the robustness and practicability of an iris recognition system operating on visible spectrum images can be enhanced by training individual classifiers on different iris features. Besides the various fusion techniques explored, an iris segmentation algorithm is proposed and a methodology for finding which colour channels from a colour space reveal the most discriminant information from the iris texture is introduced. The contributions presented in this thesis indicate that iris recognition systems that operate on visible spectrum images can be designed to operate with an accuracy required by a particular application scenario. Also, the iris recognition systems developed in the present study are suitable for mobile and embedded implementations

    A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images

    Full text link
    In line with the development of Industry 4.0, surface defect detection/anomaly detection becomes a topical subject in the industry field. Improving efficiency as well as saving labor costs has steadily become a matter of great concern in practice, where deep learning-based algorithms perform better than traditional vision inspection methods in recent years. While existing deep learning-based algorithms are biased towards supervised learning, which not only necessitates a huge amount of labeled data and human labor, but also brings about inefficiency and limitations. In contrast, recent research shows that unsupervised learning has great potential in tackling the above disadvantages for visual industrial anomaly detection. In this survey, we summarize current challenges and provide a thorough overview of recently proposed unsupervised algorithms for visual industrial anomaly detection covering five categories, whose innovation points and frameworks are described in detail. Meanwhile, publicly available datasets for industrial anomaly detection are introduced. By comparing different classes of methods, the advantages and disadvantages of anomaly detection algorithms are summarized. Based on the current research framework, we point out the core issue that remains to be resolved and provide further improvement directions. Meanwhile, based on the latest technological trends, we offer insights into future research directions. It is expected to assist both the research community and industry in developing a broader and cross-domain perspective

    The Fifteenth Marcel Grossmann Meeting

    Get PDF
    The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    Deep learning based objective quality assessment of multidimensional visual content

    Get PDF
    Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2022.Na última década, houve um tremendo aumento na popularidade dos aplicativos multimídia, aumentando assim o conteúdo multimídia. Quando esses conteúdossão gerados, transmitidos, reconstruídos e compartilhados, seus valores de pixel originais são transformados. Nesse cenário, torna-se mais crucial e exigente avaliar a qualidade visual do conteúdo visual afetado para que os requisitos dos usuários finais sejam atendidos. Neste trabalho, investigamos recursos espaciais, temporais e angulares eficazes desenvolvendo algoritmos sem referência que avaliam a qualidade visual de conteúdo visual multidimensional distorcido. Usamos algoritmos de aprendizado de máquina e aprendizado profundo para obter precisão de previsão.Para avaliação de qualidade de imagem bidimensional (2D), usamos padrões binários locais multiescala e informações de saliência e treinamos/testamos esses recursos usando o Random Forest Regressor. Para avaliação de qualidade de vídeo 2D, apresentamos um novo conceito de saliência espacial e temporal e pontuações de qualidade objetivas personalizadas. Usamos um modelo leve baseado em Rede Neural Convolucional (CNN) para treinamento e teste em patches selecionados de quadros de vídeo.Para avaliação objetiva da qualidade de imagens de campo de luz (LFI) em quatro dimensões (4D), propomos sete métodos de avaliação de qualidade LFI (LF-IQA) no total. Considerando que o LFI é composto por multi-views densas, Inspired by Human Visual System (HVS), propomos nosso primeiro método LF-IQA que é baseado em uma arquitetura CNN de dois fluxos. O segundo e terceiro métodos LF-IQA também são baseados em uma arquitetura de dois fluxos, que incorpora CNN, Long Short-Term Memory (LSTM) e diversos recursos de gargalo. O quarto LF-IQA é baseado nas camadas CNN e Atrous Convolution (ACL), enquanto o quinto método usa as camadas CNN, ACL e LSTM. O sexto método LF-IQA também é baseado em uma arquitetura de dois fluxos, na qual EPIs horizontais e verticais são processados no domínio da frequência. Por último, mas não menos importante, o sétimo método LF-IQA é baseado em uma Rede Neural Convolucional de Gráfico. Para todos os métodos mencionados acima, realizamos experimentos intensivos e os resultados mostram que esses métodos superaram os métodos de última geração em conjuntos de dados de qualidade populares.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).In the last decade, there has been a tremendous increase in the popularity of multimedia applications, hence increasing multimedia content. When these contents are generated, transmitted, reconstructed and shared, their original pixel values are transformed. In this scenario, it becomes more crucial and demanding to assess visual quality of the affected visual content so that the requirements of end-users are satisfied. In this work, we investigate effective spatial, temporal, and angular features by developing no-reference algorithms that assess the visual quality of distorted multi-dimensional visual content. We use machine learning and deep learning algorithms to obtain prediction accuracy. For two-dimensional (2D) image quality assessment, we use multiscale local binary patterns and saliency information, and train / test these features using Random Forest Regressor. For 2D video quality assessment, we introduce a novel concept of spatial and temporal saliency and custom objective quality scores. We use a Convolutional Neural Network (CNN) based light-weight model for training and testing on selected patches of video frames. For objective quality assessment of four-dimensional (4D) light field images (LFI), we propose seven LFI quality assessment (LF-IQA) methods in total. Considering that LFI is composed of dense multi-views, Inspired by Human Visual System (HVS), we propose our first LF-IQA method that is based on a two-streams CNN architecture. The second and third LF-IQA methods are also based on a two-stream architecture, which incorporates CNN, Long Short-Term Memory (LSTM), and diverse bottleneck features. The fourth LF-IQA is based on CNN and Atrous Convolution layers (ACL), while the fifth method uses CNN, ACL, and LSTM layers. The sixth LF-IQA method is also based on a two-stream architecture, in which, horizontal and vertical EPIs are processed in the frequency domain. Last, but not least, the seventh LF-IQA method is based on a Graph Convolutional Neural Network. For all of the methods mentioned above, we performed intensive experiments, and the results show that these methods outperformed state-of-the-art methods on popular quality datasets

    Deep learning for diabetic retinopathy analysis : a review, research challenges, and future directions

    Get PDF
    Deep learning (DL) enables the creation of computational models comprising multiple processing layers that learn data representations at multiple levels of abstraction. In the recent past, the use of deep learning has been proliferating, yielding promising results in applications across a growing number of fields, most notably in image processing, medical image analysis, data analysis, and bioinformatics. DL algorithms have also had a significant positive impact through yielding improvements in screening, recognition, segmentation, prediction, and classification applications across different domains of healthcare, such as those concerning the abdomen, cardiac, pathology, and retina. Given the extensive body of recent scientific contributions in this discipline, a comprehensive review of deep learning developments in the domain of diabetic retinopathy (DR) analysis, viz., screening, segmentation, prediction, classification, and validation, is presented here. A critical analysis of the relevant reported techniques is carried out, and the associated advantages and limitations highlighted, culminating in the identification of research gaps and future challenges that help to inform the research community to develop more efficient, robust, and accurate DL models for the various challenges in the monitoring and diagnosis of DR

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Skin texture features for face recognition

    Get PDF
    Face recognition has been deployed in a wide range of important applications including surveillance and forensic identification. However, it still seems to be a challenging problem as its performance severely degrades under illumination, pose and expression variations, as well as with occlusions, and aging. In this thesis, we have investigated the use of local facial skin data as a source of biometric information to improve human recognition. Skin texture features have been exploited in three major tasks, which include (i) improving the performance of conventional face recognition systems, (ii) building an adaptive skin-based face recognition system, and (iii) dealing with circumstances when a full view of the face may not be avai'lable. Additionally, a fully automated scheme is presented for localizing eyes and mouth and segmenting four facial regions: forehead, right cheek, left cheek and chin. These four regions are divided into nonoverlapping patches with equal size. A novel skin/non-skin classifier is proposed for detecting patches containing only skin texture and therefore detecting the pure-skin regions. Experiments using the XM2VTS database indicate that the forehead region has the most significant biometric information. The use of forehead texture features improves the rank-l identification of Eigenfaces system from 77.63% to 84.07%. The rank-l identification is equal 93.56% when this region is fused with Kernel Direct Discriminant Analysis algorithm
    • …
    corecore