19,411 research outputs found

    FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS

    Get PDF
    Face recognition has been a long standing problem in computer vision. General face recognition is challenging because of large appearance variability due to factors including pose, ambient lighting, expression, size of the face, age, and distance from the camera, etc. There are very accurate techniques to perform face recognition in controlled environments, especially when large numbers of samples are available for each face (individual). However, face identification under uncontrolled( unconstrained) environments or with limited training data is still an unsolved problem. There are two face recognition tasks: face identification (who is who in a probe face set, given a gallery face set) and face verification (same or not, given two faces). In this work, we study both face identification and verification in unconstrained environments. Firstly, we propose a face verification framework that combines Partial Least Squares (PLS) and the One-Shot similarity model[1]. The idea is to describe a face with a large feature set combining shape, texture and color information. PLS regression is applied to perform multi-channel feature weighting on this large feature set. Finally the PLS regression is used to compute the similarity score of an image pair by One-Shot learning (using a fixed negative set). Secondly, we study face identification with image sets, where the gallery and probe are sets of face images of an individual. We model a face set by its covariance matrix (COV) which is a natural 2nd-order statistic of a sample set.By exploring an efficient metric for the SPD matrices, i.e., Log-Euclidean Distance (LED), we derive a kernel function that explicitly maps the covariance matrix from the Riemannian manifold to Euclidean space. Then, discriminative learning is performed on the COV manifold: the learning aims to maximize the between-class COV distance and minimize the within-class COV distance. Sparse representation and dictionary learning have been widely used in face recognition, especially when large numbers of samples are available for each face (individual). Sparse coding is promising since it provides a more stable and discriminative face representation. In the last part of our work, we explore sparse coding and dictionary learning for face verification application. More specifically, in one approach, we apply sparse representations to face verification in two ways via a fix reference set as dictionary. In the other approach, we propose a dictionary learning framework with explicit pairwise constraints, which unifies the discriminative dictionary learning for pair matching (face verification) and classification (face recognition) problems

    A Discriminatively Learned CNN Embedding for Person Re-identification

    Full text link
    We revisit two popular convolutional neural networks (CNN) in person re-identification (re-ID), i.e, verification and classification models. The two models have their respective advantages and limitations due to different loss functions. In this paper, we shed light on how to combine the two models to learn more discriminative pedestrian descriptors. Specifically, we propose a new siamese network that simultaneously computes identification loss and verification loss. Given a pair of training images, the network predicts the identities of the two images and whether they belong to the same identity. Our network learns a discriminative embedding and a similarity measurement at the same time, thus making full usage of the annotations. Albeit simple, the learned embedding improves the state-of-the-art performance on two public person re-ID benchmarks. Further, we show our architecture can also be applied in image retrieval

    Comparator Networks

    Full text link
    The objective of this work is set-based verification, e.g. to decide if two sets of images of a face are of the same person or not. The traditional approach to this problem is to learn to generate a feature vector per image, aggregate them into one vector to represent the set, and then compute the cosine similarity between sets. Instead, we design a neural network architecture that can directly learn set-wise verification. Our contributions are: (i) We propose a Deep Comparator Network (DCN) that can ingest a pair of sets (each may contain a variable number of images) as inputs, and compute a similarity between the pair--this involves attending to multiple discriminative local regions (landmarks), and comparing local descriptors between pairs of faces; (ii) To encourage high-quality representations for each set, internal competition is introduced for recalibration based on the landmark score; (iii) Inspired by image retrieval, a novel hard sample mining regime is proposed to control the sampling process, such that the DCN is complementary to the standard image classification models. Evaluations on the IARPA Janus face recognition benchmarks show that the comparator networks outperform the previous state-of-the-art results by a large margin.Comment: To appear in ECCV 201

    Template Adaptation for Face Verification and Identification

    Full text link
    Face recognition performance evaluation has traditionally focused on one-to-one verification, popularized by the Labeled Faces in the Wild dataset for imagery and the YouTubeFaces dataset for videos. In contrast, the newly released IJB-A face recognition dataset unifies evaluation of one-to-many face identification with one-to-one face verification over templates, or sets of imagery and videos for a subject. In this paper, we study the problem of template adaptation, a form of transfer learning to the set of media in a template. Extensive performance evaluations on IJB-A show a surprising result, that perhaps the simplest method of template adaptation, combining deep convolutional network features with template specific linear SVMs, outperforms the state-of-the-art by a wide margin. We study the effects of template size, negative set construction and classifier fusion on performance, then compare template adaptation to convolutional networks with metric learning, 2D and 3D alignment. Our unexpected conclusion is that these other methods, when combined with template adaptation, all achieve nearly the same top performance on IJB-A for template-based face verification and identification

    A Proximity-Aware Hierarchical Clustering of Faces

    Full text link
    In this paper, we propose an unsupervised face clustering algorithm called "Proximity-Aware Hierarchical Clustering" (PAHC) that exploits the local structure of deep representations. In the proposed method, a similarity measure between deep features is computed by evaluating linear SVM margins. SVMs are trained using nearest neighbors of sample data, and thus do not require any external training data. Clusters are then formed by thresholding the similarity scores. We evaluate the clustering performance using three challenging unconstrained face datasets, including Celebrity in Frontal-Profile (CFP), IARPA JANUS Benchmark A (IJB-A), and JANUS Challenge Set 3 (JANUS CS3) datasets. Experimental results demonstrate that the proposed approach can achieve significant improvements over state-of-the-art methods. Moreover, we also show that the proposed clustering algorithm can be applied to curate a set of large-scale and noisy training dataset while maintaining sufficient amount of images and their variations due to nuisance factors. The face verification performance on JANUS CS3 improves significantly by finetuning a DCNN model with the curated MS-Celeb-1M dataset which contains over three million face images

    Face Identification and Clustering

    Full text link
    In this thesis, we study two problems based on clustering algorithms. In the first problem, we study the role of visual attributes using an agglomerative clustering algorithm to whittle down the search area where the number of classes is high to improve the performance of clustering. We observe that as we add more attributes, the clustering performance increases overall. In the second problem, we study the role of clustering in aggregating templates in a 1:N open set protocol using multi-shot video as a probe. We observe that by increasing the number of clusters, the performance increases with respect to the baseline and reaches a peak, after which increasing the number of clusters causes the performance to degrade. Experiments are conducted using recently introduced unconstrained IARPA Janus IJB-A, CS2, and CS3 face recognition datasets

    Multi-shot Pedestrian Re-identification via Sequential Decision Making

    Full text link
    Multi-shot pedestrian re-identification problem is at the core of surveillance video analysis. It matches two tracks of pedestrians from different cameras. In contrary to existing works that aggregate single frames features by time series model such as recurrent neural network, in this paper, we propose an interpretable reinforcement learning based approach to this problem. Particularly, we train an agent to verify a pair of images at each time. The agent could choose to output the result (same or different) or request another pair of images to verify (unsure). By this way, our model implicitly learns the difficulty of image pairs, and postpone the decision when the model does not accumulate enough evidence. Moreover, by adjusting the reward for unsure action, we can easily trade off between speed and accuracy. In three open benchmarks, our method are competitive with the state-of-the-art methods while only using 3% to 6% images. These promising results demonstrate that our method is favorable in both efficiency and performance
    • …
    corecore