986 research outputs found
On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly
In the field of face recognition, Sparse Representation (SR) has received
considerable attention during the past few years. Most of the relevant
literature focuses on holistic descriptors in closed-set identification
applications. The underlying assumption in SR-based methods is that each class
in the gallery has sufficient samples and the query lies on the subspace
spanned by the gallery of the same class. Unfortunately, such assumption is
easily violated in the more challenging face verification scenario, where an
algorithm is required to determine if two faces (where one or both have not
been seen before) belong to the same person. In this paper, we first discuss
why previous attempts with SR might not be applicable to verification problems.
We then propose an alternative approach to face verification via SR.
Specifically, we propose to use explicit SR encoding on local image patches
rather than the entire face. The obtained sparse signals are pooled via
averaging to form multiple region descriptors, which are then concatenated to
form an overall face descriptor. Due to the deliberate loss spatial relations
within each region (caused by averaging), the resulting descriptor is robust to
misalignment & various image deformations. Within the proposed framework, we
evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder
Neural Network (SANN), and an implicit probabilistic technique based on
Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and
ChokePoint datasets show that the proposed local SR approach obtains
considerably better and more robust performance than several previous
state-of-the-art holistic SR methods, in both verification and closed-set
identification problems. The experiments also show that l1-minimisation based
encoding has a considerably higher computational than the other techniques, but
leads to higher recognition rates
A Survey of the Trends in Facial and Expression Recognition Databases and Methods
Automated facial identification and facial expression recognition have been
topics of active research over the past few decades. Facial and expression
recognition find applications in human-computer interfaces, subject tracking,
real-time security surveillance systems and social networking. Several holistic
and geometric methods have been developed to identify faces and expressions
using public and local facial image databases. In this work we present the
evolution in facial image data sets and the methodologies for facial
identification and recognition of expressions such as anger, sadness,
happiness, disgust, fear and surprise. We observe that most of the earlier
methods for facial and expression recognition aimed at improving the
recognition rates for facial feature-based methods using static images.
However, the recent methodologies have shifted focus towards robust
implementation of facial/expression recognition from large image databases that
vary with space (gathered from the internet) and time (video recordings). The
evolution trends in databases and methodologies for facial and expression
recognition can be useful for assessing the next-generation topics that may
have applications in security systems or personal identification systems that
involve "Quantitative face" assessments.Comment: 16 pages, 4 figures, 3 tables, International Journal of Computer
  Science and Engineering Survey, October, 201
The Incremental Multiresolution Matrix Factorization Algorithm
Multiresolution analysis and matrix factorization are foundational tools in
computer vision. In this work, we study the interface between these two
distinct topics and obtain techniques to uncover hierarchical block structure
in symmetric matrices -- an important aspect in the success of many vision
problems. Our new algorithm, the incremental multiresolution matrix
factorization, uncovers such structure one feature at a time, and hence scales
well to large matrices. We describe how this multiscale analysis goes much
farther than what a direct global factorization of the data can identify. We
evaluate the efficacy of the resulting factorizations for relative leveraging
within regression tasks using medical imaging data. We also use the
factorization on representations learned by popular deep networks, providing
evidence of their ability to infer semantic relationships even when they are
not explicitly trained to do so. We show that this algorithm can be used as an
exploratory tool to improve the network architecture, and within numerous other
settings in vision.Comment: Computer Vision and Pattern Recognition (CVPR) 2017, 10 page
- …
