312,292 research outputs found

    Face recognition in the wild.

    Get PDF
    Research in face recognition deals with problems related to Age, Pose, Illumination and Expression (A-PIE), and seeks approaches that are invariant to these factors. Video images add a temporal aspect to the image acquisition process. Another degree of complexity, above and beyond A-PIE recognition, occurs when multiple pieces of information are known about people, which may be distorted, partially occluded, or disguised, and when the imaging conditions are totally unorthodox! A-PIE recognition in these circumstances becomes really “wild” and therefore, Face Recognition in the Wild has emerged as a field of research in the past few years. Its main purpose is to challenge constrained approaches of automatic face recognition, emulating some of the virtues of the Human Visual System (HVS) which is very tolerant to age, occlusion and distortions in the imaging process. HVS also integrates information about individuals and adds contexts together to recognize people within an activity or behavior. Machine vision has a very long road to emulate HVS, but face recognition in the wild, using the computer, is a road to perform face recognition in that path. In this thesis, Face Recognition in the Wild is defined as unconstrained face recognition under A-PIE+; the (+) connotes any alterations to the design scenario of the face recognition system. This thesis evaluates the Biometric Optical Surveillance System (BOSS) developed at the CVIP Lab, using low resolution imaging sensors. Specifically, the thesis tests the BOSS using cell phone cameras, and examines the potential of facial biometrics on smart portable devices like iPhone, iPads, and Tablets. For quantitative evaluation, the thesis focused on a specific testing scenario of BOSS software using iPhone 4 cell phones and a laptop. Testing was carried out indoor, at the CVIP Lab, using 21 subjects at distances of 5, 10 and 15 feet, with three poses, two expressions and two illumination levels. The three steps (detection, representation and matching) of the BOSS system were tested in this imaging scenario. False positives in facial detection increased with distances and with pose angles above ± 15°. The overall identification rate (face detection at confidence levels above 80%) also degraded with distances, pose, and expressions. The indoor lighting added challenges also, by inducing shadows which affected the image quality and the overall performance of the system. While this limited number of subjects and somewhat constrained imaging environment does not fully support a “wild” imaging scenario, it did provide a deep insight on the issues with automatic face recognition. The recognition rate curves demonstrate the limits of low-resolution cameras for face recognition at a distance (FRAD), yet it also provides a plausible defense for possible A-PIE face recognition on portable devices

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis

    Face modeling for face recognition in the wild.

    Get PDF
    Face understanding is considered one of the most important topics in computer vision field since the face is a rich source of information in social interaction. Not only does the face provide information about the identity of people, but also of their membership in broad demographic categories (including sex, race, and age), and about their current emotional state. Facial landmarks extraction is the corner stone in the success of different facial analyses and understanding applications. In this dissertation, a novel facial modeling is designed for facial landmarks detection in unconstrained real life environment from different image modalities including infra-red and visible images. In the proposed facial landmarks detector, a part based model is incorporated with holistic face information. In the part based model, the face is modeled by the appearance of different face part(e.g., right eye, left eye, left eyebrow, nose, mouth) and their geometric relation. The appearance is described by a novel feature referred to as pixel difference feature. This representation is three times faster than the state-of-art in feature representation. On the other hand, to model the geometric relation between the face parts, the complex Bingham distribution is adapted from the statistical community into computer vision for modeling the geometric relationship between the facial elements. The global information is incorporated with the local part model using a regression model. The model results outperform the state-of-art in detecting facial landmarks. The proposed facial landmark detector is tested in two computer vision problems: boosting the performance of face detectors by rejecting pseudo faces and camera steering in multi-camera network. To highlight the applicability of the proposed model for different image modalities, it has been studied in two face understanding applications which are face recognition from visible images and physiological measurements for autistic individuals from thermal images. Recognizing identities from faces under different poses, expressions and lighting conditions from a complex background is an still unsolved problem even with accurate detection of landmark. Therefore, a learning similarity measure is proposed. The proposed measure responds only to the difference in identities and filter illuminations and pose variations. similarity measure makes use of statistical inference in the image plane. Additionally, the pose challenge is tackled by two new approaches: assigning different weights for different face part based on their visibility in image plane at different pose angles and synthesizing virtual facial images for each subject at different poses from single frontal image. The proposed framework is demonstrated to be competitive with top performing state-of-art methods which is evaluated on standard benchmarks in face recognition in the wild. The other framework for the face understanding application, which is a physiological measures for autistic individual from infra-red images. In this framework, accurate detecting and tracking Superficial Temporal Arteria (STA) while the subject is moving, playing, and interacting in social communication is a must. It is very challenging to track and detect STA since the appearance of the STA region changes over time and it is not discriminative enough from other areas in face region. A novel concept in detection, called supporter collaboration, is introduced. In support collaboration, the STA is detected and tracked with the help of face landmarks and geometric constraint. This research advanced the field of the emotion recognition

    Effect of Super Resolution on High Dimensional Features for Unsupervised Face Recognition in the Wild

    Full text link
    Majority of the face recognition algorithms use query faces captured from uncontrolled, in the wild, environment. Often caused by the cameras limited capabilities, it is common for these captured facial images to be blurred or low resolution. Super resolution algorithms are therefore crucial in improving the resolution of such images especially when the image size is small requiring enlargement. This paper aims to demonstrate the effect of one of the state-of-the-art algorithms in the field of image super resolution. To demonstrate the functionality of the algorithm, various before and after 3D face alignment cases are provided using the images from the Labeled Faces in the Wild (lfw). Resulting images are subject to testing on a closed set face recognition protocol using unsupervised algorithms with high dimension extracted features. The inclusion of super resolution algorithm resulted in significant improved recognition rate over recently reported results obtained from unsupervised algorithms

    A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

    Full text link
    Recently, technologies such as face detection, facial landmark localisation and face recognition and verification have matured enough to provide effective and efficient solutions for imagery captured under arbitrary conditions (referred to as "in-the-wild"). This is partially attributed to the fact that comprehensive "in-the-wild" benchmarks have been developed for face detection, landmark localisation and recognition/verification. A very important technology that has not been thoroughly evaluated yet is deformable face tracking "in-the-wild". Until now, the performance has mainly been assessed qualitatively by visually assessing the result of a deformable face tracking technology on short videos. In this paper, we perform the first, to the best of our knowledge, thorough evaluation of state-of-the-art deformable face tracking pipelines using the recently introduced 300VW benchmark. We evaluate many different architectures focusing mainly on the task of on-line deformable face tracking. In particular, we compare the following general strategies: (a) generic face detection plus generic facial landmark localisation, (b) generic model free tracking plus generic facial landmark localisation, as well as (c) hybrid approaches using state-of-the-art face detection, model free tracking and facial landmark localisation technologies. Our evaluation reveals future avenues for further research on the topic.Comment: E. Antonakos and P. Snape contributed equally and have joint second authorshi
    • …
    corecore