13 research outputs found

    Database Cross Matching: A Novel Source of Fictitious Forensic Cases

    Get PDF
    Due to privacy concern and data protection laws, it is very difficult to obtain real forensic data for forensic face recognition research. In this paper, we introduce the concept of Database Cross Matching (DCM) as a novel source of fictitious but challenging forensic cases. DCM refers to the task of finding the subjects that are common in two different data sets. For most pairs of independent data sets, there will be no common subjects. However, for some data sets captured at the same institution, but independently and at different times, there is a high probability of finding some common subjects. We demonstrate the feasibility of DCM using the PIE and MultiPIE data set that were captured at the same institution in 2000 and 2004 respectively. We denote the task of finding the subjects that are common in PIE and MultiPIE data as PIE \cap MultiPIE problem. Evaluation of the five face recognition systems applied to the PIE \cap MultiPIE problem show that DCM can indeed create very challenging forensic problems

    Virtual illumination grid for correction of uncontrolled illumination in facial images

    Get PDF
    Face recognition under uncontrolled illumination conditions is still considered an unsolved problem. In order to correct for these illumination conditions, we propose a virtual illumination grid (VIG) approach to model the unknown illumination conditions. Furthermore, we use coupled subspace models of both the facial surface and albedo to estimate the face shape. In order to obtain a representation of the face under frontal illumination, we relight the estimated face shape. We show that the frontal illuminated facial images achieve better performance in face recognition. We have performed the challenging Experiment 4 of the FRGCv2 database, which compares uncontrolled probe images to controlled gallery images. Our illumination correction method results in considerably better recognition rates for a number of well-known face recognition methods. By fusing our global illumination correction method with a local illumination correction method, further improvements are achieved

    3D and Thermo-Face Fusion

    Get PDF

    Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction

    Get PDF
    Orthognathic surgery involves repositioning of the jaw bones to restore face function and shape for patients who require an operation as a result of a syndrome, due to growth disturbances in childhood or after trauma. As part of the preoperative assessment, three-dimensional medical imaging and computer-assisted surgical planning help to improve outcomes, and save time and cost. Computer-assisted surgical planning involves visualisation and manipulation of the patient anatomy and can be used to aid objective diagnosis, patient communication, outcome evaluation, and surgical simulation. Despite the benefits, the adoption of three-dimensional tools has remained limited beyond specialised hospitals and traditional two-dimensional cephalometric analysis is still the gold standard. This thesis presents a multidisciplinary approach to innovative surgical simulation involving clinical patient data, medical image analysis, engineering principles, and state-of-the-art machine learning and computer vision algorithms. Two novel three-dimensional computational models were developed to overcome the limitations of current computer-assisted surgical planning tools. First, a physical modelling approach – based on a probabilistic finite element model – provided patient-specific simulations and, through training and validation, population-specific parameters. The probabilistic model was equally accurate compared to two commercial programs whilst giving additional information regarding uncertainties relating to the material properties and the mismatch in bone position between planning and surgery. Second, a statistical modelling approach was developed that presents a paradigm shift in its modelling formulation and use. Specifically, a 3D morphable model was constructed from 5,000 non-patient and orthognathic patient faces for fully-automated diagnosis and surgical planning. Contrary to traditional physical models that are limited to a finite number of tests, the statistical model employs machine learning algorithms to provide the surgeon with a goal-driven patient-specific surgical plan. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life

    Optimierungsstrategien für Gesichtsklassifikation bei der softwaregestützten Erkennung von Akromegalie

    Get PDF

    Analysis of 3D Face Reconstruction

    No full text
    This thesis investigates the long standing problem of 3D reconstruction from a single 2D face image. Face reconstruction from a single 2D face image is an ill posed problem involving estimation of the intrinsic and the extrinsic camera parameters, light parameters, shape parameters and the texture parameters. The proposed approach has many potential applications in the law enforcement, surveillance, medicine, computer games and the entertainment industries. This problem is addressed using an analysis by synthesis framework by reconstructing a 3D face model from identity photographs. The identity photographs are a widely used medium for face identi cation and can be found on identity cards and passports. The novel contribution of this thesis is a new technique for creating 3D face models from a single 2D face image. The proposed method uses the improved dense 3D correspondence obtained using rigid and non-rigid registration techniques. The existing reconstruction methods use the optical ow method for establishing 3D correspondence. The resulting 3D face database is used to create a statistical shape model. The existing reconstruction algorithms recover shape by optimizing over all the parameters simultaneously. The proposed algorithm simplifies the reconstruction problem by using a step wise approach thus reducing the dimension of the parameter space and simplifying the opti- mization problem. In the alignment step, a generic 3D face is aligned with the given 2D face image by using anatomical landmarks. The texture is then warped onto the 3D model by using the spatial alignment obtained previously. The 3D shape is then recovered by optimizing over the shape parameters while matching a texture mapped model to the target image. There are a number of advantages of this approach. Firstly, it simpli es the optimization requirements and makes the optimization more robust. Second, there is no need to accurately recover the illumination parameters. Thirdly, there is no need for recovering the texture parameters by using a texture synthesis approach. Fourthly, quantitative analysis is used for improving the quality of reconstruction by improving the cost function. Previous methods use qualitative methods such as visual analysis, and face recognition rates for evaluating reconstruction accuracy. The improvement in the performance of the cost function occurs as a result of improvement in the feature space comprising the landmark and intensity features. Previously, the feature space has not been evaluated with respect to reconstruction accuracy thus leading to inaccurate assumptions about its behaviour. The proposed approach simpli es the reconstruction problem by using only identity images, rather than placing eff ort on overcoming the pose, illumination and expression (PIE) variations. This makes sense, as frontal face images under standard illumination conditions are widely available and could be utilized for accurate reconstruction. The reconstructed 3D models with texture can then be used for overcoming the PIE variations

    Uses of uncalibrated images to enrich 3D models information

    Get PDF
    The decrease in costs of semi-professional digital cameras has led to the possibility for everyone to acquire a very detailed description of a scene in a very short time. Unfortunately, the interpretation of the images is usually quite hard, due to the amount of data and the lack of robust and generic image analysis methods. Nevertheless, if a geometric description of the depicted scene is available, it gets much easier to extract information from 2D data. This information can be used to enrich the quality of the 3D data in several ways. In this thesis, several uses of sets of unregistered images for the enrichment of 3D models are shown. In particular, two possible fields of application are presented: the color acquisition, projection and visualization and the geometry modification. Regarding color management, several practical and cheap solutions to overcome the main issues in this field are presented. Moreover, some real applications, mainly related to Cultural Heritage, show that provided methods are robust and effective. In the context of geometry modification, two approaches are presented to modify already existing 3D models. In the first one, information extracted from images is used to deform a dummy model to obtain accurate 3D head models, used for simulation in the context of three-dimensional audio rendering. The second approach presents a method to fill holes in 3D models, with the use of registered images depicting a pattern projected on the real object. Finally, some useful indications about the possible future work in all the presented fields are given, in order to delineate the developments of this promising direction of research
    corecore