14 research outputs found

    Cohen-Macaulay graphs and face vectors of flag complexes

    Full text link
    We introduce a construction on a flag complex that, by means of modifying the associated graph, generates a new flag complex whose hh-factor is the face vector of the original complex. This construction yields a vertex-decomposable, hence Cohen-Macaulay, complex. From this we get a (non-numerical) characterisation of the face vectors of flag complexes and deduce also that the face vector of a flag complex is the hh-vector of some vertex-decomposable flag complex. We conjecture that the converse of the latter is true and prove this, by means of an explicit construction, for hh-vectors of Cohen-Macaulay flag complexes arising from bipartite graphs. We also give several new characterisations of bipartite graphs with Cohen-Macaulay or Buchsbaum independence complexes.Comment: 14 pages, 3 figures; major updat

    Face enumeration on simplicial complexes

    Full text link
    Let MM be a closed triangulable manifold, and let Δ\Delta be a triangulation of MM. What is the smallest number of vertices that Δ\Delta can have? How big or small can the number of edges of Δ\Delta be as a function of the number of vertices? More generally, what are the possible face numbers (ff-numbers, for short) that Δ\Delta can have? In other words, what restrictions does the topology of MM place on the possible ff-numbers of triangulations of MM? To make things even more interesting, we can add some combinatorial conditions on the triangulations we are considering (e.g., flagness, balancedness, etc.) and ask what additional restrictions these combinatorial conditions impose. While only a few theorems in this area of combinatorics were known a couple of decades ago, in the last ten years or so, the field simply exploded with new results and ideas. Thus we feel that a survey paper is long overdue. As new theorems are being proved while we are typing this chapter, and as we have only a limited number of pages, we apologize in advance to our friends and colleagues, some of whose results will not get mentioned here.Comment: Chapter for upcoming IMA volume Recent Trends in Combinatoric

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Simplicial matrix-tree theorems

    Get PDF
    We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes Δ\Delta, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of Δ\Delta. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of Δ\Delta and replacing the entries of the Laplacian with Laurent monomials. When Δ\Delta is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.Comment: 36 pages, 2 figures. Final version, to appear in Trans. Amer. Math. So

    Simplicial effective resistance and enumeration of spanning trees

    Full text link
    A graph can be regarded as an electrical network in which each edge is a resistor. This point of view relates combinatorial quantities, such as the number of spanning trees, to electrical ones such as effective resistance. The second and third authors have extended the combinatorics/electricity analogy to higher dimension and expressed the simplicial analogue of effective resistance as a ratio of weighted tree enumerators. In this paper, we first use that ratio to prove a new enumeration formula for color-shifted complexes, confirming a conjecture by Aalipour and the first author, and generalizing a result of Ehrenborg and van Willigenburg on Ferrers graphs. We then use the same technique to recover an enumeration formula for shifted complexes, first proved by Klivans and the first and fourth authors. In each case, we add facets one at a time, and give explicit expressions for simplicial effective resistances of added facets by constructing high-dimensional analogues of currents and voltages (respectively homological cycles and cohomological cocycles).Comment: 27 pages, minor revisions from v
    corecore