2 research outputs found

    Face Alignment Robust to Pose, Expressions and Occlusions

    Full text link
    We propose an Ensemble of Robust Constrained Local Models for alignment of faces in the presence of significant occlusions and of any unknown pose and expression. To account for partial occlusions we introduce, Robust Constrained Local Models, that comprises of a deformable shape and local landmark appearance model and reasons over binary occlusion labels. Our occlusion reasoning proceeds by a hypothesize-and-test search over occlusion labels. Hypotheses are generated by Constrained Local Model based shape fitting over randomly sampled subsets of landmark detector responses and are evaluated by the quality of face alignment. To span the entire range of facial pose and expression variations we adopt an ensemble of independent Robust Constrained Local Models to search over a discretized representation of pose and expression. We perform extensive evaluation on a large number of face images, both occluded and unoccluded. We find that our face alignment system trained entirely on facial images captured "in-the-lab" exhibits a high degree of generalization to facial images captured "in-the-wild". Our results are accurate and stable over a wide spectrum of occlusions, pose and expression variations resulting in excellent performance on many real-world face datasets

    Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment

    Full text link
    Heatmap regression has been used for landmark localization for quite a while now. Most of the methods use a very deep stack of bottleneck modules for heatmap classification stage, followed by heatmap regression to extract the keypoints. In this paper, we present a single dendritic CNN, termed as Pose Conditioned Dendritic Convolution Neural Network (PCD-CNN), where a classification network is followed by a second and modular classification network, trained in an end to end fashion to obtain accurate landmark points. Following a Bayesian formulation, we disentangle the 3D pose of a face image explicitly by conditioning the landmark estimation on pose, making it different from multi-tasking approaches. Extensive experimentation shows that conditioning on pose reduces the localization error by making it agnostic to face pose. The proposed model can be extended to yield variable number of landmark points and hence broadening its applicability to other datasets. Instead of increasing depth or width of the network, we train the CNN efficiently with Mask-Softmax Loss and hard sample mining to achieve upto 15%15\% reduction in error compared to state-of-the-art methods for extreme and medium pose face images from challenging datasets including AFLW, AFW, COFW and IBUG.Comment: CVPR'1
    corecore