17,902 research outputs found
Robust Fabry-Perot interference in dual-gated BiSe devices
We study Fabry-Perot interference in hybrid devices, each consisting of a
mesoscopic superconducting disk deposited on the surface of a three-dimensional
topological insulator. Such structures are hypothesized to contain protected
zero modes known as Majorana fermions bound to vortices. The interference
manifests as periodic conductance oscillations of magnitude .
These oscillations show no strong dependence on bulk carrier density or sample
thickness, suggesting that they result from phase coherent transport in surface
states. However, the Fabry-Perot interference can be tuned by both top and back
gates, implying strong electrostatic coupling between the top and bottom
surfaces of topological insulator.Comment: 5 pages, 3 figures. Accepted by Appl. Phys. Let
Interference, Coulomb blockade, and the identification of non-abelian quantum Hall states
We examine the relation between different electronic transport phenomena in a
Fabry-Perot interferometer in the fractional quantum Hall regime. In
particular, we study the way these phenomena reflect the statistics of quantum
Hall quasi-particles. For two series of states we examine, one abelian and one
non-abelian, we show that the information that may be obtained from
measurements of the lowest order interference pattern in an open Fabry-Perot
interferometer is identical to the one that may be obtained from the
temperature dependence of Coulomb blockade peaks in a closed interferometer. We
argue that despite the similarity between the experimental signatures of the
two series of states, interference and Coulomb blockade measurements are likely
to be able to distinguish between abelian and non-abelian states, due to the
sensitivity of the abelian states to local perturbations, to which the
non-abelian states are insensitive.Comment: 10 pages. Published versio
Phase Coherence and Andreev Reflection in Topological Insulator Devices
Topological insulators (TIs) have attracted immense interest because they
host helical surface states. Protected by time-reversal symmetry, they are
robust to non-magnetic disorder. When superconductivity is induced in these
helical states, they are predicted to emulate p-wave pairing symmetry, with
Majorana states bound to vortices. Majorana bound states possess non-Abelian
exchange statistics which can be probed through interferometry. Here, we take a
significant step towards Majorana interferometry by observing pronounced
Fabry-Perot oscillations in a TI sandwiched between a superconducting and
normal lead. For energies below the superconducting gap, we observe a doubling
in the frequency of the oscillations, arising from the additional phase
accumulated from Andreev reflection. When a magnetic field is applied
perpendicular to the TI surface, a number of very sharp and gate-tunable
conductance peaks appear at or near zero energy, which has consequences for
interpreting spectroscopic probes of Majorana fermions. Our results demonstrate
that TIs are a promising platform for exploring phase-coherent transport in a
solid-state system.Comment: 9 pages, 7 figure
Low-cost thin-metal-film interference filters
Interference filters and filter arrays based on thin-metal film interference filters having at least one dielectric layer formed between two thin-metal films to form a Fabry-Perot cavity
The many facets of the Fabry-Perot
We address the response, both in amplitude and intensity, of a Fabry-Perot
from a variety of viewpoints. These complementary pictures conspire to achieve
a comprehensive and consistent theory of the operation of this system.Comment: 15 pages, 9 figure
- …
