1,111 research outputs found

    MOSAR: A Soft-Assistive Mobilizer for Upper Limb Active Use and Rehabilitation

    Get PDF
    In this study, a soft assisted mobilizer called MOSAR from (Mobilizador Suave de Asistencia y Rehabilitación) for upper limb rehabilitation was developed for a 11 years old child with right paretic side. The mobilizer provides a new therapeutic approach to augment his upper limb active use and rehabilitation, by means of exerting elbow (flexion-extension), forearm (pronation-supination) and (flexion-extension along with ulnar-radial deviations) at the wrist. Preliminarily, the design concept of the soft mobilizer was developed through Reverse Engineering of his upper limb: first casting model, silicone model, and later computational model were obtained by 3D scan, which was the parameterized reference for MOSAR development. Then, the manufacture of fabric inflatable soft actuators for driving the MOSAR system were carried out. Lastly, a law close loop control for the inflation-deflation process was implemented to validate FISAs performance. The results demonstrated the feasibility and effectiveness of the FISAs for being a functional tool for upper limb rehabilitation protocols by achieving those previous target motions similar to the range of motion (ROM) of a healthy person or being used in other applications

    Design Criteria of Soft Exogloves for Hand Rehabilitation- Assistance Tasks

    Get PDF
    This paper establishes design criteria for soft exogloves (SEG) to be used as rehabilitation or assistance devices. This research consists in identifying, selecting, and grouping SEG features based on the analysis of 91 systems that have been proposed during the last decade. Thus, function, mobility, and usability criteria are defined and explicitly discussed to highlight SEG design guidelines. Additionally, this study provides a detailed description of each system that was analysed including application, functional task, palm design, actuation type, assistance mode, degrees of freedom (DOF), target fingers, motions, material, weight, force, pressure (only for fluids), control strategy, and assessment. Such characteristics have been reported according to specific design methodologies and operating principles. Technological trends are contemplated in this contribution with emphasis on SEG design opportunity areas. In this review, suggestions, limitations, and implications are also discussed in order to enhance future SEG developments aimed at stroke survivors or people with hand disabilities

    Design and Fabrication of Fabric ReinforcedTextile Actuators forSoft Robotic Graspers

    Get PDF
    abstract: Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of most of these grippers. This work introduces fabric-reinforced textile actuators (FRTA). The selection of materials, design logic of the fabric reinforcement layer and fabrication method are discussed. The relationship between the fabric reinforcement characteristics and the actuator deformation is studied and experimentally verified. The FRTA are made of a combination of a hyper-elastic fabric material with a stiffer fabric reinforcement on top. In this thesis, the design, fabrication, and evaluation of FRTAs are explored. It is shown that by varying the geometry of the reinforcement layer, a variety of motion can be achieve such as axial extension, radial expansion, bending, and twisting along its central axis. Multi-segmented actuators can be created by tailoring different sections of fabric-reinforcements together in order to generate a combination of motions to perform specific tasks. The applicability of this actuators for soft grippers is demonstrated by designing and providing preliminary evaluation of an anthropomorphic soft robotic hand capable of grasping daily living objects of various size and shapes.Dissertation/ThesisMasters Thesis Biomedical Engineering 201

    Design Methodology for Soft Wearable Devices—The MOSAR Case

    Get PDF
    This paper proposes a methodology from the conception to the manufacture of soft wearable devices (SWD). This methodology seeks to unify medical, therapeutic and engineering guidelines for research, development and innovation. The aforementioned methodology is divided into two stages (A and B) and four phases. Stage A only includes phase 1 to identify the main necessity for a patient that will define the target of its associated device. Stage B encompasses phases 2, 3 and 4. The development of three models (virtual, mathematical and experimental physical) of the required device is addressed in phase 2. Phase 3 concerns the control and manufacture of the experimental physical model (EPM). Phase 4 focuses on the EPM experimental validation. As a result of this methodology, 13 mobility, 11 usability and 3 control iterative design criteria for SWD are reported. Moreover, more than 50 products are provided on a technological platform with modular architectures that facilitate SWD diversification. A case study related to a soft mobilizer for upper limb rehabilitation is reported. Nevertheless, this methodology can be implemented in different areas and accelerates the transition from development to innovation

    Study and development of sensorimotor interfaces for robotic human augmentation

    Get PDF
    This thesis presents my research contribution to robotics and haptics in the context of human augmentation. In particular, in this document, we are interested in bodily or sensorimotor augmentation, thus the augmentation of humans by supernumerary robotic limbs (SRL). The field of sensorimotor augmentation is new in robotics and thanks to the combination with neuroscience, great leaps forward have already been made in the past 10 years. All of the research work I produced during my Ph.D. focused on the development and study of fundamental technology for human augmentation by robotics: the sensorimotor interface. This new concept is born to indicate a wearable device which has two main purposes, the first is to extract the input generated by the movement of the user's body, and the second to provide the somatosensory system of the user with an haptic feedback. This thesis starts with an exploratory study of integration between robotic and haptic devices, intending to combine state-of-the-art devices. This allowed us to realize that we still need to understand how to improve the interface that will allow us to feel the agency when using an augmentative robot. At this point, the path of this thesis forks into two alternative ways that have been adopted to improve the interaction between the human and the robot. In this regard, the first path we presented tackles two aspects conerning the haptic feedback of sensorimotor interfaces, which are the choice of the positioning and the effectiveness of the discrete haptic feedback. In the second way we attempted to lighten a supernumerary finger, focusing on the agility of use and the lightness of the device. One of the main findings of this thesis is that haptic feedback is considered to be helpful by stroke patients, but this does not mitigate the fact that the cumbersomeness of the devices is a deterrent to their use. Preliminary results here presented show that both the path we chose to improve sensorimotor augmentation worked: the presence of the haptic feedback improves the performance of sensorimotor interfaces, the co-positioning of haptic feedback and the input taken from the human body can improve the effectiveness of these interfaces, and creating a lightweight version of a SRL is a viable solution for recovering the grasping function

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level
    corecore