1,730,898 research outputs found

    On the nonlinear growth of single three-dimensional disturbances in boundary layers

    Get PDF
    Experiments indicate the importance of three-dimensional action during transition, while high-Reynolds-number-flow theory indicates a multi-structured type of analysis. In line with this, the three-dimensional nonlinear unsteady triple-deck problem is addressed here, for slower transition. High-amplitude/high-frequency properties show enhanced disturbance growth occurring downstream for single nonlinear oblique waves inclined at angles greater than tan−1 √2 (≈54.7°) to the free stream, in certain interesting special cases. The three-dimensional response there is very ‘spiky’ and possibly random, with sideband instabilities present. A second nonlinear stage, and then an Euler stage, are entered further downstream, although faster transition can go straight into these more nonlinear stages. More general cases are also considered. Sideband effects, sublayer bursting and secondary instabilities are discussed, along with the relation to experimental observations

    Theoretical prediction and design for vortex generators in turbulent boundary layers

    Get PDF
    A theoretical study is presented of three-dimensional turbulent flow provoked in a boundary layer by an array of low-profile vortex generators (VGs) on the surface. The typical VG sits in the logarithmic region of the incident boundary layer, and the turbulence model used seems representative in this region. The governing equations yield a forward-marching three-dimensional vortex-type system, which is solved computationally and analytically for spanwise periodic VG arrays. Streamwise vortex patterns of various strengths are produced downstream, owing to three-dimensional distortion of the original logarithmic profile and to the turbulent stresses present. Predictions are given for certain basic VG shapes, e.g. triangular, with various spanwise spacings, and the predictions are found to agree favourably overall with recent experiments. In addition, the analytical formulae obtained prove useful in suggesting designs for favourable VG distributions, based on three factors: close spanwise packing, increased VG length, and suitably non-smooth spanwise shaping

    Hard Thermal Loops in the n-Dimensional phi3 Theory

    Full text link
    We derive a closed-form result for the leading thermal contributions which appear in the n-dimensional phi3 theory at high temperature. These contributions become local only in the long wavelength and in the static limits, being given by different expressions in these two limits.Comment: 3 pages, one figure. To be published in the Brazilian Journal of Physic

    The Drosophila F-box protein Fbxl7 binds to the protocadherin fat and regulates Dachs localization and Hippo signaling.

    Get PDF
    The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization

    Evaluation of SMAP Freeze/Thaw Retrieval Accuracy at Core Validation Sites in the Contiguous United States

    Get PDF
    Seasonal freeze-thaw (FT) impacts much of the northern hemisphere and is an important control on its water, energy, and carbon cycle. Although FT in natural environments extends south of 45°N, FT studies using the L-band have so far been restricted to boreal or greater latitudes. This study addresses this gap by applying a seasonal threshold algorithm to Soil Moisture Active Passive (SMAP) data (L3_SM_P) to obtain a FT product south of 45°N (‘SMAP FT’), which is then evaluated at SMAP core validation sites (CVS) located in the contiguous United States (CONUS). SMAP landscape FT retrievals are usually in good agreement with 0–5 cm soil temperature at SMAP grids containing CVS stations (\u3e70%). The accuracy could be further improved by taking into account specific overpass time (PM), the grid-specific seasonal scaling factor, the data aggregation method, and the sampling error. Annual SMAP FT extent maps compared to modeled soil temperatures derived from the Goddard Earth Observing System Model Version 5 (GEOS-5) show that seasonal FT in CONUS extends to latitudes of about 35–40°N, and that FT varies substantially in space and by year. In general, spatial and temporal trends between SMAP and modeled FT were similar

    PLATE-INJECTION INTO A SEPARATED SUPERSONIC BOUNDARY-LAYER

    Get PDF
    The structure of a supersonic laminar boundary layer near a flat plate is examined when fluid is injected into it with velocity of O(ε3U*[infty infinity]) over a distance of O(L). Here U*[infty infinity] is the undisturbed fluid velocity, L the length of the plate and ε−8 is a representative Reynolds number. An essential requirement of the theory is that separation must have occurred upstream of the blow through a free interaction. It is assumed that between separation and the blow the reversed flow region has a wedge-like shape, of semi-angle in which O(ε2), the fluid velocity has decayed to insignificant values at points just upstream of the blowing region. The blown fluid fills this wedge and the favourable pressure gradient necessary to drive this fluid downstream causes the boundary of the wedge to curve until at the end of the blow it is parallel to the plate. Explicit expressions for the pressure variation and boundary-layer thickness are worked out using a (crucially) modified form of the Cole-Aroesty theory. The relation. between the strong injection studied here and massive injection, when the blowing velocity is of O(U*[infty infinity]), is also discussed

    ON INTERACTION BETWEEN FALLING BODIES AND THE SURROUNDING FLUID

    Get PDF
    Interactions between a finite number of bodies and the surrounding fluid, in a channel for instance, are investigated theoretically. In the planar model here the bodies or modelled grains are thin solid bodies free to move in a nearly parallel formation within a quasi-inviscid fluid. The investigation involves numerical and analytical studies and comparisons. The three main features that appear are a linear instability about a state of uniform motion, a clashing of the bodies (or of a body with a side wall) within a finite scaled time when nonlinear interaction takes effect, and a continuum-limit description of the body–fluid interaction holding for the case of many bodies

    Planar flows past thin multi-blade configurations

    Get PDF
    Two-dimensional steady laminar flows past multiple thin blades positioned in near or exact sequence are examined for large Reynolds numbers. Symmetric configurations require solution of the boundary-layer equations alone, in parabolic fashion, over the successive blades. Non-symmetric configurations in contrast yield a new global inner-outer interaction in which the boundary layers, the wakes and the potential flow outside have to be determined together, to satisfy pressure-continuity conditions along each successive gap or wake. A robust computational scheme is used to obtain numerical solutions in direct or design mode, followed by analysis. Among other extremes, many-blade analysis shows a double viscous structure downstream with two streamwise length scales operating there. Lift and drag are also considered. Another new global interaction is found further downstream. All the interactions involved seem peculiar to multi-blade flows
    corecore