1,423,490 research outputs found

    Frames, semi-frames, and Hilbert scales

    Full text link
    Given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with bounded inverse. For upper semi-frames, in the discrete and the continuous case, we build two natural Hilbert scales which may yield a novel characterization of certain function spaces of interest in signal processing. We present some examples and, in addition, some results concerning the duality between lower and upper semi-frames, as well as some generalizations, including fusion semi-frames and Banach semi-frames.Comment: 27 pages; Numerical Functional Analysis and Optimization, 33 (2012) in press. arXiv admin note: substantial text overlap with arXiv:1101.285

    Compare and contrast between duals of fusion and discrete frames

    Full text link
    Fusion frames are valuable generalizations of discrete frames. Most concepts of fusion frames are shared by discrete frames. However, the dual setting is so complicated. In particular, unlike discrete frames, two fusion frames are not dual of each other in general. In this paper, we investigate the structure of the duals of fusion frames and discuss the relation between the duals of fusion frames with their associated discrete frames.Comment: 12 page
    corecore