3 research outputs found

    Comparing Width Parameters on Graph Classes

    Full text link
    We study how the relationship between non-equivalent width parameters changes once we restrict to some special graph class. As width parameters, we consider treewidth, clique-width, twin-width, mim-width, sim-width and tree-independence number, whereas as graph classes we consider Kt,tK_{t,t}-subgraph-free graphs, line graphs and their common superclass, for tβ‰₯3t \geq 3, of Kt,tK_{t,t}-free graphs. We first provide a complete comparison when restricted to Kt,tK_{t,t}-subgraph-free graphs, showing in particular that treewidth, clique-width, mim-width, sim-width and tree-independence number are all equivalent. This extends a result of Gurski and Wanke (2000) stating that treewidth and clique-width are equivalent for the class of Kt,tK_{t,t}-subgraph-free graphs. Next, we provide a complete comparison when restricted to line graphs, showing in particular that, on any class of line graphs, clique-width, mim-width, sim-width and tree-independence number are all equivalent, and bounded if and only if the class of root graphs has bounded treewidth. This extends a result of Gurski and Wanke (2007) stating that a class of graphs G{\cal G} has bounded treewidth if and only if the class of line graphs of graphs in G{\cal G} has bounded clique-width. We then provide an almost-complete comparison for Kt,tK_{t,t}-free graphs, leaving one missing case. Our main result is that Kt,tK_{t,t}-free graphs of bounded mim-width have bounded tree-independence number. This result has structural and algorithmic consequences. In particular, it proves a special case of a conjecture of Dallard, Milani\v{c} and \v{S}torgel. Finally, we consider the question of whether boundedness of a certain width parameter is preserved under graph powers. We show that the question has a positive answer for sim-width precisely in the case of odd powers.Comment: 31 pages, 4 figures, abstract shortened due to arXiv requirement

    Unified almost linear kernels for generalized covering and packing problems on nowhere dense classes

    Full text link
    Let F\mathcal{F} be a family of graphs, and let p,rp,r be nonnegative integers. The \textsc{(p,r,F)(p,r,\mathcal{F})-Covering} problem asks whether for a graph GG and an integer kk, there exists a set DD of at most kk vertices in GG such that Gpβˆ–NGr[D]G^p\setminus N_G^r[D] has no induced subgraph isomorphic to a graph in F\mathcal{F}, where GpG^p is the pp-th power of GG. The \textsc{(p,r,F)(p,r,\mathcal{F})-Packing} problem asks whether for a graph GG and an integer kk, GpG^p has kk induced subgraphs H1,…,HkH_1,\ldots,H_k such that each HiH_i is isomorphic to a graph in F\mathcal{F}, and for distinct i,j∈{1,…,k}i,j\in \{1, \ldots, k\}, the distance between V(Hi)V(H_i) and V(Hj)V(H_j) in GG is larger than rr. We show that for every fixed nonnegative integers p,rp,r and every fixed nonempty finite family F\mathcal{F} of connected graphs, the \textsc{(p,r,F)(p,r,\mathcal{F})-Covering} problem with p≀2r+1p\leq2r+1 and the \textsc{(p,r,F)(p,r,\mathcal{F})-Packing} problem with p≀2⌊r/2βŒ‹+1p\leq2\lfloor r/2\rfloor+1 admit almost linear kernels on every nowhere dense class of graphs, and admit linear kernels on every class of graphs with bounded expansion, parameterized by the solution size kk. We obtain the same kernels for their annotated variants. As corollaries, we prove that \textsc{Distance-rr Vertex Cover}, \textsc{Distance-rr Matching}, \textsc{F\mathcal{F}-Free Vertex Deletion}, and \textsc{Induced-F\mathcal{F}-Packing} for any fixed finite family F\mathcal{F} of connected graphs admit almost linear kernels on every nowhere dense class of graphs and linear kernels on every class of graphs with bounded expansion. Our results extend the results for \textsc{Distance-rr Dominating Set} by Drange et al. (STACS 2016) and Eickmeyer et al. (ICALP 2017), and the result for \textsc{Distance-rr Independent Set} by Pilipczuk and Siebertz (EJC 2021).Comment: 38 page
    corecore