15 research outputs found

    Keeping Secrets in Hardware: the Microsoft Xbox(TM) Case Study

    Get PDF
    This paper discusses the hardware foundations of the cryptosystem employed by the Xbox(TM) video game console from Microsoft. A secret boot block overlay is buried within a system ASIC. This secret boot block decrypts and verifies portions of an external FLASH-type ROM. The presence of the secret boot block is camouflaged by a decoy boot block in the external ROM. The code contained within the secret boot block is transferred to the CPU in the clear over a set of high-speed busses where it can be extracted using simple custom hardware. The paper concludes with recommendations for improving the Xbox security system. One lesson of this study is that the use of a high-performance bus alone is not a sufficient security measure, given the advent of inexpensive, fast rapid prototyping services and high-performance FPGAs

    FPGA Implementation of RC6 algorithm for IPSec protocol

    Get PDF
    With today's great demand for secure communications systems, there is a growing demand for real-time implementation of cryptographic algorithms. In this thesis we present a hardware implementation of the RC6 algorithm using VHDL Hardware Description Language. And the goal of the thesis was to implement a subset of the IPSec protocol using a Microcontroller and an FPGA. IPSEC is a framework for security that operates at the Network Layer by extending the IP packet header. IPSec protocol is to guarantee the security of data while traveling through the network. The motivation was to enable network application and cryptography to assembly and VHDL languages and to develop a prototype of their system. In this thesis many different sub-systems had to communicate with each other to achieve the final product: the PC and the Microcontroller through a serial connection, the Microcontroller and the FPGA through a bidirectional bus, and the Microcontroller and a terminal using a serial connection. Data was to be encrypted and decrypted using an RC6 algorithm including key scheduling application. The crypto-coprocessor (to implement RC6 algorithms) was implemented within an FPGA and connected to the Microcontroller bus

    An Overview of Cryptography (Updated Version, 3 March 2016)

    Get PDF
    There are many aspects to security and many applications, ranging from secure commerce and payments to private communications and protecting passwords. One essential aspect for secure communications is that of cryptography...While cryptography is necessary for secure communications, it is not by itself sufficient. This paper describes the first of many steps necessary for better security in any number of situations. A much shorter, edited version of this paper appears in the 1999 edition of Handbook on Local Area Networks published by Auerbach in September 1998

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    Efficient Arithmetic for the Implementation of Elliptic Curve Cryptography

    Get PDF
    The technology of elliptic curve cryptography is now an important branch in public-key based crypto-system. Cryptographic mechanisms based on elliptic curves depend on the arithmetic of points on the curve. The most important arithmetic is multiplying a point on the curve by an integer. This operation is known as elliptic curve scalar (or point) multiplication operation. A cryptographic device is supposed to perform this operation efficiently and securely. The elliptic curve scalar multiplication operation is performed by combining the elliptic curve point routines that are defined in terms of the underlying finite field arithmetic operations. This thesis focuses on hardware architecture designs of elliptic curve operations. In the first part, we aim at finding new architectures to implement the finite field arithmetic multiplication operation more efficiently. In this regard, we propose novel schemes for the serial-out bit-level (SOBL) arithmetic multiplication operation in the polynomial basis over F_2^m. We show that the smallest SOBL scheme presented here can provide about 26-30\% reduction in area-complexity cost and about 22-24\% reduction in power consumptions for F_2^{163} compared to the current state-of-the-art bit-level multiplier schemes. Then, we employ the proposed SOBL schemes to present new hybrid-double multiplication architectures that perform two multiplications with latency comparable to the latency of a single multiplication. Then, in the second part of this thesis, we investigate the different algorithms for the implementation of elliptic curve scalar multiplication operation. We focus our interest in three aspects, namely, the finite field arithmetic cost, the critical path delay, and the protection strength from side-channel attacks (SCAs) based on simple power analysis. In this regard, we propose a novel scheme for the scalar multiplication operation that is based on processing three bits of the scalar in the exact same sequence of five point arithmetic operations. We analyse the security of our scheme and show that its security holds against both SCAs and safe-error fault attacks. In addition, we show how the properties of the proposed elliptic curve scalar multiplication scheme yields an efficient hardware design for the implementation of a single scalar multiplication on a prime extended twisted Edwards curve incorporating 8 parallel multiplication operations. Our comparison results show that the proposed hardware architecture for the twisted Edwards curve model implemented using the proposed scalar multiplication scheme is the fastest secure SCA protected scalar multiplication scheme over prime field reported in the literature

    Cryptographic Key Distribution In Wireless Sensor Networks Using Bilinear Pairings

    Get PDF
    It is envisaged that the use of cheap and tiny wireless sensors will soon bring a third wave of evolution in computing systems. Billions of wireless senor nodes will provide a bridge between information systems and the physical world. Wireless nodes deployed around the globe will monitor the surrounding environment as well as gather information about the people therein. It is clear that this revolution will put security solutions to a great test. Wireless Sensor Networks (WSNs) are a challenging environment for applying security services. They differ in many aspects from traditional fixed networks, and standard cryptographic solutions cannot be used in this application space. Despite many research efforts, key distribution in WSNs still remains an open problem. Many of the proposed schemes suffer from high communication overhead and storage costs, low scalability and poor resilience against different types of attacks. The exclusive usage of simple and energy efficient symmetric cryptography primitives does not solve the security problem. On the other hand a full public key infrastructure which uses asymmetric techniques, digital signatures and certificate authorities seems to be far too complex for a constrained WSN environment. This thesis investigates a new approach to WSN security which addresses many of the shortcomings of existing mechanisms. It presents a detailed description on how to provide practical Public Key Cryptography solutions for wireless sensor networks. The contributions to the state-of-the-art are added on all levels of development beginning with the basic arithmetic operations and finishing with complete security protocols. This work includes a survey of different key distribution protocols that have been developed for WSNs, with an evaluation of their limitations. It also proposes Identity- Based Cryptography (IBC) as an ideal technique for key distribution in sensor networks. It presents the first in-depth study of the application and implementation of Pairing- Based Cryptography (PBC) to WSNs. This is followed by a presentation of the state of the art on the software implementation of Elliptic Curve Cryptography (ECC) on typical WSNplatforms. New optimized algorithms for performing multiprecision multiplication on a broad range of low-end CPUs are introduced as well. Three novel protocols for key distribution are proposed in this thesis. Two of these are intended for non-interactive key exchange in flat and clustered networks respectively. A third key distribution protocol uses Identity-Based Encryption (IBE) to secure communication within a heterogeneous sensor network. This thesis includes also a comprehensive security evaluation that shows that proposed schemes are resistant to various attacks that are specific to WSNs. This work shows that by using the newest achievements in cryptography like pairings and IBC it is possible to deliver affordable public-key cryptographic solutions and to apply a sufficient level of security for the most demanding WSN applications

    A Salad of Block Ciphers

    Get PDF
    This book is a survey on the state of the art in block cipher design and analysis. It is work in progress, and it has been for the good part of the last three years -- sadly, for various reasons no significant change has been made during the last twelve months. However, it is also in a self-contained, useable, and relatively polished state, and for this reason I have decided to release this \textit{snapshot} onto the public as a service to the cryptographic community, both in order to obtain feedback, and also as a means to give something back to the community from which I have learned much. At some point I will produce a final version -- whatever being a ``final version\u27\u27 means in the constantly evolving field of block cipher design -- and I will publish it. In the meantime I hope the material contained here will be useful to other people

    Parallel and distributed processing in high speed traffic monitoring

    Get PDF
    This thesis presents a parallel and distributed approach for the purpose of processing network traffic at high speeds. The proposed architecture provides the processing power required to run one or more traffic processing applications at line rates by means of processing full packets at multi-gigabits speeds using a parallel and distributed processing environment. Moreover, the architecture is flexible and scalable to future needs by supporting heterogeneous processing nodes such as different hardware architectures or different generations of the same hardware architecture. In addition to the processing, flexibility, and scalability features, our architecture provides an easy-to-use environment with the help of a new programming language, called FPL, for traffic processing in a distributed environment. The language and its compiler come to hide specific programming details when using heterogeneous systems and a distributed environment.UBL - phd migration 201

    Efficient Design and implementation of Elliptic Curve Cryptography on FPGA

    Get PDF

    A survey of timing channels and countermeasures

    Get PDF
    A timing channel is a communication channel that can transfer information to a receiver/decoder by modulating the timing behavior of an entity. Examples of this entity include the interpacket delays of a packet stream, the reordering packets in a packet stream, or the resource access time of a cryptographic module. Advances in the information and coding theory and the availability of high-performance computing systems interconnected by high-speed networks have spurred interest in and development of various types of timing channels. With the emergence of complex timing channels, novel detection and prevention techniques are also being developed to counter them. In this article, we provide a detailed survey of timing channels broadly categorized into network timing channel, in which communicating entities are connected by a network, and in-system timing channel, in which the communicating entities are within a computing system. This survey builds on the last comprehensive survey by Zander et al. [2007] and considers all three canonical applications of timing channels, namely, covert communication, timing side channel, and network flow watermarking. We survey the theoretical foundations, the implementation, and the various detection and prevention techniques that have been reported in literature. Based on the analysis of the current literature, we discuss potential future research directions both in the design and application of timing channels and their detection and prevention techniques
    corecore