1,149 research outputs found

    FPGA based Novel High Speed DAQ System Design with Error Correction

    Full text link
    Present state of the art applications in the area of high energy physics experiments (HEP), radar communication, satellite communication and bio medical instrumentation require fault resilient data acquisition (DAQ) system with the data rate in the order of Gbps. In order to keep the high speed DAQ system functional in such radiation environment where direct intervention of human is not possible, a robust and error free communication system is necessary. In this work we present an efficient DAQ design and its implementation on field programmable gate array (FPGA). The proposed DAQ system supports high speed data communication (~4.8 Gbps) and achieves multi-bit error correction capabilities. BCH code (named after Raj Bose and D. K. RayChaudhuri) has been used for multi-bit error correction. The design has been implemented on Xilinx Kintex-7 board and is tested for board to board communication as well as for board to PC using PCIe (Peripheral Component Interconnect express) interface. To the best of our knowledge, the proposed FPGA based high speed DAQ system utilizing optical link and multi-bit error resiliency can be considered first of its kind. Performance estimation of the implemented DAQ system is done based on resource utilization, critical path delay, efficiency and bit error rate (BER).Comment: ISVLSI 2015. arXiv admin note: substantial text overlap with arXiv:1505.04569, arXiv:1503.0881

    ATLAS Upgrade Instrumentation in the US

    Full text link
    Planned upgrades of the LHC over the next decade should allow the machine to operate at a center of mass energy of 14 TeV with instantaneous luminosities in the range 5--7e34 cm^-2 s^-1. With these parameters, ATLAS could collect 3,000 fb^-1 of data in approximately 10 years. However, the conditions under which this data would be acquired are much harsher than those currently encountered at the LHC. For example, the number of proton-proton interactions per bunch crossing will rise from the level of 20--30 per 50 ns crossing observed in 2012 to 140--200 every 25 ns. In order to deepen our understanding of the newly discovered Higgs boson and to extend our searches for physics beyond that new particle, the ATLAS detector, trigger, and readout will have to undergo significant upgrades. In this whitepaper we describe R&D necessary for ATLAS to continue to run effectively at the highest luminosities foreseen from the LHC. Emphasis is placed on those R&D efforts in which US institutions are playing a leading role.Comment: Snowmass contributed paper, 24 pages, 12 figure

    Design of an FPGA Based High-Speed Data Acquisition System for Frequency Scanning Interferometry Long Range Measurement

    Get PDF
    Frequency Scanning Interferometry (FSI) has become a popular method for long-range, target based, distance measurements. However, the cost of developing such systems, particularly the electronic components required for high-speed data acquisition, remains a significant concern. In this paper, we present a cost-effective, FPGA-based real-time data acquisition system specifically designed for FSI, with a focus on long absolute distance measurements. Our design minimizes the use of third-party intellectual property (IP) and is fully compatible with the Xilinx FPGA 7 series families. The hardware employs a 160 MS/s, 16-bit dual-channel ADC interfaced to the FPGA via a Low Voltage Differential Signal (LVDS). The proposed system incorporates an external sampling clock, referred to as the K- clock, which linearizes the laser's tuning rate, enabling optical measurements to be sampled at equal optical frequency intervals rather than equal time intervals. Additionally, we present the design of a high-speed, 160 MS/s ADC module for the front-end analogue signal interface and the LVDS connection to the chosen FPGA. We demonstrate that the digitized data samples can be efficiently transmitted to a PC application via a USB interface for further processing

    Asymmetric data acquisition system for an endoscopic PET-US detector

    Get PDF
    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data

    Ready to Use Detector Modules for the NEAT Spectrometer Concept, Design, First Results

    Get PDF
    The paper presents the detector system developed by Datalist Systems, Ltd. previously ANTE Innovative Technologies for the NEAT II spectrometer at HZB. We present initial concept, design and implementation highlights as well as the first results of measurements such as position resolution. The initial concept called for modular architecture with 416 3He detector tubes organized into thirteen 32 tube modules that can be independently installed and removed to and from the detector vacuum chamber for ease of maintenance. The unalloyed aluminum mechanical support modules for four 8 tube units each also house the air boxes that contain the front end electronics preamplifiers that need to be on atmospheric pressure. The modules have been manufactured and partly assembled in Hungary and then fully assembled and installed on site by Datalist Systems crew. The signal processing and data acquisition solution is based on low time constant 60 ns preamplifier electronics and sampling ADC s running at 50 MS s i.e. a sample every 20 ns for all 832 data channels. The preamplifiers are proprietary, developed specifically for the NEAT spectrometer, while the ADC s and the FPGA s that further process the data are based on National Instruments products. The data acquisition system comprises 26 FPGA modules each serving 16 tubes providing for up to 50 kHz count rate per individual tube and it is organized into two PXI chassis and two data acquisition computers that perform post processing, event classification and provide appropriate preview of the collected data. The data acquisition software based on Event Recording principles provides a single point of contact for the scientific software with an Event Record List with absolute timestamps of 100ns resolution, timing data of 100 ns resolution for the seven discs chopper system as well as classification data that can be used for flexible data filtering in off line analysis of the gathered data. A unique 3 tier system of filtering criteria of events is in operation a hard threshold in the FPGA s to reduce the effect of noise, a pulse shape based classification to eliminate gamma sensitivity and an additional flexible feature based classification to filter out pileup and other unwanted phenomena. This ensures high count rates 50kHz per tube, 1MHz overall while maintaining good quality of measurements e.g. position resolution .The first measurement results show that the delivered detector system meets the initial requirements of 20 mm position resolution along the 2000mm long detector tubes. This is partly due to the innovative event classification system that provides vital pulse shape data that can be used for sophisticated position resolution algorithms implemented on the DAQ computer

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces
    corecore