25,306 research outputs found
Constitutively active FOXO1 diminishes activin induction of Fshb transcription in immortalized gonadotropes.
In the present study, we investigate whether the FOXO1 transcription factor modulates activin signaling in pituitary gonadotropes. Our studies show that overexpression of constitutively active FOXO1 decreases activin induction of murine Fshb gene expression in immortalized LβT2 cells. We demonstrate that FOXO1 suppression of activin induction maps to the -304/-95 region of the Fshb promoter containing multiple activin response elements and that the suppression requires the FOXO1 DNA-binding domain (DBD). FOXO1 binds weakly to the -125/-91 region of the Fshb promoter in a gel-shift assay. Since this region of the promoter contains a composite SMAD/FOXL2 binding element necessary for activin induction of Fshb transcription, it is possible that FOXO1 DNA binding interferes with SMAD and/or FOXL2 function. In addition, our studies demonstrate that FOXO1 directly interacts with SMAD3/4 but not SMAD2 in a FOXO1 DBD-dependent manner. Moreover, we show that SMAD3/4 induction of Fshb-luc and activin induction of a multimerized SMAD-binding element-luc are suppressed by FOXO1 in a DBD-dependent manner. These results suggest that FOXO1 binding to the proximal Fshb promoter as well as FOXO1 interaction with SMAD3/4 proteins may result in decreased activin induction of Fshb in gonadotropes
The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver
Secreted frizzled-related protein (sFRP) 4 is an adipokine with increased expression in white adipose tissue from obese subjects with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Yet, it is unknown whether sFRP4 action contributes to the development of these pathologies. Here, we determined whether sFRP4 expression in visceral fat associates with NAFLD and whether it directly interferes with insulin action and lipid and glucose metabolism in primary hepatocytes and myotubes. The association of sFRP4 with clinical measures was investigated in obese men with or without type 2 diabetes and with or without biopsy-proven NAFLD. To determine the impact of sFRP4 on metabolic parameters, primary human myotubes (hSkMC), or primary hepatocytes from metabolic healthy C57B16 and from systemic insulin-resistant mice, i.e. aP2-SREBP-1c, were used. Gene expression of sFRP4 in visceral fat from obese men associated with insulin sensitivity, triglycerides and NAFLD. In C57B16 hepatocytes, sFRP4 disturbed insulin action. Specifically, sFRP4 decreased the abundance of IRS1 and FoxO1 together with impaired insulin-mediated activation of Akt-signalling and glycogen synthesis and a reduced suppression of gluconeogenesis by insulin. Moreover, sFRP4 enhanced insulin-stimulated hepatic de novo lipogenesis (DNL). In hSkMC, sFRP4 induced glycolysis rather than inhibiting insulin signalling. Finally, in hepatocytes from aP2-SREBP-1c mice, sFRP4 potentiates existing insulin resistance. Collectively, we show that sFRP4 interferes with hepatocyte insulin action. Physiologically, sFRP4 promotes DNL in hepatocytes and glycolysis in myotubes. These sFRP4-mediated responses may result in a vicious cycle, in which enhanced rates of DNL and glycolysis aggravate hepatic lipid accumulation and insulin resistance
VE-cadherin and claudin-5: it takes two to tango
Endothelial barrier function requires the adhesive activity of VE-cadherin
and claudin-5, which are key components of adherens and tight endothelial
junctions, respectively. Emerging evidence suggests that VE-cadherin controls
claudin-5 expression by preventing the nuclear accumulation of FoxO1 and
-catenin, which repress the claudin-5 promoter. This indicates that a crosstalk
mechanism operates between these junctional structures
ESF-EMBO symposium "molecular biology and innovative therapies in sarcomas of childhood and adolescence" Sept 29–Oct 4, Polonia Castle Pultusk, Poland
Rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) are among the most common pediatric sarcomas (Arndt et al., 2012). Despite sarcomas representing a highly heterogeneous group of tumors, ES and alveolar RMS (ARMS) typically share one common genetic characteristic, namely a specific chromosomal translocation (Helman and Meltzer, 2003; Lessnick and Ladanyi, 2012). These translocations generate fusion proteins, which are composed of two transcription factors (TF). Typically, one TF is a developmentally regulated factor that is essential for proper specification of a given lineage and provides the DNA-binding domain, while the partner TF contributes a transactivation domain that drives aberrant expression of target genes. Based on these common genetic characteristics, the first ESF-EMBO research conference entitled “Molecular Biology and Innovative Therapies in Sarcomas of Childhood and Adolescence” with special focus on RMS and ES was held at the Polonia Castle in Pultusk, Poland. The conference gathered 70 participants from more than 15 countries and several continents representing most research groups that are active in this field
Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling.
Defective hepatic insulin receptor (IR) signalling is a pathogenic manifestation of metabolic disorders including obesity and diabetes. The endo/lysosomal trafficking system may coordinate insulin action and nutrient homeostasis by endocytosis of IR and the autophagic control of intracellular nutrient levels. Here we show that class III PI3K--a master regulator of endocytosis, endosomal sorting and autophagy--provides negative feedback on hepatic insulin signalling. The ultraviolet radiation resistance-associated gene protein (UVRAG)-associated class III PI3K complex interacts with IR and is stimulated by insulin treatment. Acute and chronic depletion of hepatic Vps15, the regulatory subunit of class III PI3K, increases insulin sensitivity and Akt signalling, an effect that requires functional IR. This is reflected by FoxO1-dependent transcriptional defects and blunted gluconeogenesis in Vps15 mutant cells. On depletion of Vps15, the metabolic syndrome in genetic and diet-induced models of insulin resistance and diabetes is alleviated. Thus, feedback regulation of IR trafficking and function by class III PI3K may be a therapeutic target in metabolic conditions of insulin resistance
Insulin-like growth factor-1 is a negative modulator of glucagon secretion
Glucagon secretion involves a combination of paracrine, autocrine, hormonal, and autonomic neural mechanisms. Type 2 diabetes often presents impaired glucagon suppression by insulin and glucose. Insulin-like growth factor-I (IGF-1) has elevated homology with insulin, and regulates pancreatic β-cells insulin secretion. Insulin and IGF-1 receptors share considerable structure homology and function. We hypothesized the existence of a mechanism linking the inhibition of α-cells glucagon secretion to IGF-1. Herein, we evaluated the association between plasma IGF-1 and glucagon levels in 116 nondiabetic adults. After adjusting for age gender and BMI, fasting glucagon levels were positively correlated with 2-h post-load glycaemia, HOMA index and fasting insulin, and were negatively correlated with IGF-1 levels. In a multivariable regression, the variables independently associated to fasting glucagon were circulating IGF-1 levels, HOMA index and BMI, explaining 20.7% variation. To unravel the molecular mechanisms beneath IGF-1 and glucagon association, we investigated whether IGF-1 directly modulates glucagon expression and secretion in an in vitro model of α-cells. Our data showed that IGF-1 inhibits the ability of low glucose concentration to stimulate glucagon expression and secretion via activation of the phosphatidylinositol-3-kinase/Akt/FoxO1 pathway. Collectively, our results suggest a new regulatory role of IGF-1 on α-cells biological function
The transcriptomic evolution of mammalian pregnancy:gene expression innovations in endometrial stromal fibroblasts
The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type “neo-ESF” in contrast to “paleo-ESF” which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation
Development of a targeted and controlled nanoparticle delivery system for FoxO1 inhibitors
Background: Poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) are polymers approved by the United States’ Food and Drug Administration. Drugs for various medical treatments have been encapsulated in PLGA-PEG nanoparticles for targeted delivery and reduction of unwanted side effects.
Methods: A flow synthesis method for PLGA-PEG nanoparticles containing FoxO1 inhibitors and adipose vasculature targeting agents was developed. A set of nanoparticles including PLGA and PLGA-PEG-P3 unloaded and drug loaded were generated. The particles were characterized by DLS, fluorescence spectroscopy, TEM, and dialysis. Endotoxin levels were measured using the LAL chromogenic assay. Our approach was compared to over 270 research articles using information extraction tools.
Results: Nanoparticle hydrodynamic diameters ranged from 142.4 ±0.4 d.nm to 208.7 ±3.6 d.nm while the polydispersity index was less than 0.500 for all samples (0.057 ±0.021 to 0.369 ±0.038). Zeta potentials were all negative ranging from -4.33 mV to -13.4 mV. Stability testing confirmed that size remained unchanged for up to 4 weeks. For AS1842856, loading was 0.5 mg drug/mL solution and encapsulation efficiency was ~100%. Dialysis indicated burst release of drug in the first 4 hours.
Conclusion: PLGA encapsulation of AS1842856 was successful but unsuccessful for the two more hydrophilic drugs. Alternative syntheses such as water/oil/water emulsion or liposomal encapsulation are being considered. Analysis of data from published papers on PLGA nanoparticles indicated that our results were consistent with identified process-structure relationships and few groups reported endotoxin levels even though in vivo testing was performed.https://scholarscompass.vcu.edu/gradposters/1071/thumbnail.jp
The progestin receptor interactome in the female mouse hypothalamus: Interactions with synaptic proteins are isoform specific and ligand dependent
Progestins bind to the progestin receptor (PR) isoforms, PR-A and PR-B, in brain to influence development, female reproduction, anxiety, and stress. Hormone-activated PRs associate with multiple proteins to form functional complexes. In the present study, proteins from female mouse hypothalamus that associate with PR were isolated using affinity pull-down assays with glutathione S-transferase–tagged mouse PR-A and PR-B. Using complementary proteomics approaches, reverse phase protein array (RPPA) and mass spectrometry, we identified hypothalamic proteins that interact with PR in a ligand-dependent and isoform-specific manner and were confirmed by Western blot. Synaptic proteins, including synapsin-I and synapsin-II, interacted with agonist-bound PR isoforms, suggesting that both isoforms function in synaptic plasticity. In further support, synaptogyrin-III and synapsin-III associated with PR-A and PR-B, respectively. PR also interacted with kinases, including c-Src, mTOR, and MAPK1, confirming phosphorylation as an integral process in rapid effects of PR in the brain. Consistent with a role in transcriptional regulation, PR associated with transcription factors and coactivators in a ligand-specific and isoform-dependent manner. Interestingly, both PR isoforms associated with a key regulator of energy homeostasis, FoxO1, suggesting a novel role for PR in energy metabolism. Because many identified proteins in this PR interactome are synaptic proteins, we tested the hypothesis that progestins function in synaptic plasticity. Indeed, progesterone enhanced synaptic density, by increasing synapsin-I–positive synapses, in rat primary cortical neuronal cultures. This novel combination of RPPA and mass spectrometry allowed identification of PR action in synaptic remodeling and energy homeostasis and reveals unique roles for progestins in brain function and disease
- …
