9,271 research outputs found

    Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells

    Get PDF
    Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1 and folate receptors in cultured human cells and tumor xenografts, and more selectively in various fetal tissues of folate-deficient dams.Conclusions: This novel positive feedback loop amplifies hnRNP-E1 during prolonged folate deficiency and thereby maximizes upregulation of folate receptors in order to restore folate homeostasis toward normalcy in placental cells. It will also functionally impact several other mRNAs of the nutrition-sensitive, folate-responsive posttranscriptional RNA operon that is orchestrated by homocysteinylated hnRNP-E1

    Health impact assessment of folate biofortified rice in China

    Get PDF

    Effectiveness of folic acid fortified flour for prevention of neural tube defects in a high risk region

    Get PDF
    Despite efforts to tackle folate deficiency and Neural Tube Defects (NTDs) through folic acid fortification, its implementation is still lacking where it is needed most, highlighting the need for studies that evaluate the effectiveness of folic acid fortified wheat flour in a poor, rural, high-risk, NTD region of China. One of the most affected regions, Shanxi Province, was selected as a case study. A community intervention was carried out in which 16,648 women of child-bearing age received fortified flour (eight villages) and a control group received ordinary flour (three villages). NTD birth prevalence and biological indicators were measured two years after program initiation at endline only. The effect on the NTD burden was calculated using the disability-adjusted life years (DALYs) method. In the intervention group, serum folate level was higher than in the control group. NTDs in the intervention group were 68.2% lower than in the control group (OR = 0.313, 95% CI = 0.207-0473, p < 0.001). In terms of DALYs, burden in intervention group was approximately 58.5% lower than in the control group. Flour fortification was associated with lower birth prevalence and burden of NTDs in economically developing regions with a high risk of NTDs. The positive findings confirm the potential of fortification when selecting an appropriate food vehicle and target region. As such, this study provides support for decision makers aiming for the implementation of (mandatory) folic acid fortification in China

    Deficiencies of the microelements, folate and vitamin B12 in women of the child bearing ages in Gorgan, Northern Iran

    Get PDF
    Background: The deficiencies of folic acid, vitamin B12, and microelements during pregnancy may affect the health of newborns. Objectives: To assess the serum levels of folate, vitamin B12, iron, zinc and copper in healthy women of the childbearing ages in Gorgan, northern Iran. Methodology: This descriptive, cross-sectional study was carried out on 100 women of childbearing ages in northern Iran during November 2007-March 2008. The serum levels of folate, vitamin B12, iron, copper and zinc were evaluated by laboratory tests. Results: Iron, copper, folate, vitamin B12 deficiencies and folate with vitamin B12 deficiency were detected in 13%, 32%, 13%, 32% and 11% women of the childbearing ages, respectively. According to the ethnicity, vitamin B12, folate and iron deficiencies in the Sistani group were observed in 38.3%, 12.9% and 12.9% of the women, respectively. In the native Fars group, the above mentioned deficiencies were found in 31.1%, 13.4% and 7.5% of the subjects. Folate and vitamin B12 deficiencies were observed in the urban habitant in 32.7% and 11.5% of the subjects as compared to those in the rural habitant (in 30.4% and 15.2%of the subjects respectively). The folate deficiencies in the under and above 18 years old subjects were 22.2% and 9.9%, respectively. Conclusions: This study showed that the deficiency of the micronutrients was considerable in women of the childbearing ages in Gorgan, northern Iran

    Toward eradication of B-vitamin deficiencies : considerations for crop biofortification

    Get PDF
    'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta
    corecore