179,843 research outputs found
Flow detectors having mechanical oscillators, and use thereof in flow characterization systems
An improved system (100), resonator flow detector (102) and method for characterizing a fluid sample that includes o injecting a fluid sample into a mobile phase of a flow characterization system (106), and detecting a property of the fluid sample > or of a component thereof with a flow detector (102) comprising a mechanical resonator (120), preferably one that is operated at a frequency less than about 1 MHz, such as tuning fork resonator
Vergleich dreier Ringversuche zur radioimmunologischen Thyrotropin-Bestimmung nach dem "Münchner Modell"
Peer Reviewe
Viscous fingering of miscible slices
Viscous fingering of a miscible high viscosity slice of fluid displaced by a
lower viscosity fluid is studied in porous media by direct numerical
simulations of Darcy's law coupled to the evolution equation for the
concentration of a solute controlling the viscosity of miscible solutions. In
contrast with fingering between two semi-infinite regions, fingering of finite
slices is a transient phenomenon due to the decrease in time of the viscosity
ratio across the interface induced by fingering and dispersion processes. We
show that fingering contributes transiently to the broadening of the peak in
time by increasing its variance. A quantitative analysis of the asymptotic
contribution of fingering to this variance is conducted as a function of the
four relevant parameters of the problem i.e. the log-mobility ratio R, the
length of the slice l, the Peclet number Pe and the ratio between transverse
and axial dispersion coefficients . Relevance of the results is
discussed in relation with transport of viscous samples in chromatographic
columns and propagation of contaminants in porous media.Comment: 10 pages, 13 figure
A new Principle of Thyroxine (T4) and Triiodo-thyronin (T3) Radioimmunoassay in unextracted Serum using Antisera with binding Optima at extreme pH ranges
Operator Inference for Non-Intrusive Model Reduction of Systems with Non-Polynomial Nonlinear Terms
Immunoreactive inhibin in human follicular fluid in an ovarian hyperstimulation proramme for in vitro fertilisation: correlations and different forms
Ion exchange chromatography – basic principles and application
Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80 kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone)
Analysis of free analyte fractions by rapid affinity chromatography
The invention is generally directed toward an analytical method to determine the concentration of the free analyte fraction in a sample. More particularly, the method encompasses applying a sample comprising a free and bound analyte fraction to an affinity column capable of selectively extracting the free fraction in the millisecond time domain. The signal generated by the free fraction is then quantified by standard analytical detection techniques. The concentration of the free fraction may then be determined by comparison of its signal with that of a calibration curve depicting the signal of known concentration of the same analyte
Headspace analysis of natural yoghurt using headspace solid phase microextraction : a thesis presented in partial fulfilment of the requirements for the degree of Master of Philosophy in Food Technology at Massey University (Turitea Campus), Palmerston North, New Zealand
The Solid Phase Microextraction (SPME) method was originally developed to extract volatile and semivolatile compounds from wastewater samples but has since been applied to flavour compounds in foods and beverages. Research using the HS-SPME in related areas such as cheese and skim milk powder has been carried out but, to date, no work has been done on yoghurt flavours. The main objective of this study was to devise a methodology for the Headspace Solid Phase Microextraction (HS-SPME) technique to investigate and quantify six flavour analytes in natural, set yoghurts made from recombined milk. The relevant literature was reviewed and from it, a research proposal for this work on yoghurts was drawn. The first step in analysing and quantifying the yoghurt volatiles was to set up a working methodology for the HS-SPME method. The 100 μm polydimethylsiloxane (PDMS) fibre was chosen along with 20 minutes being the optimum fibre adsorption time. General equipment, materials and methods used throughout this thesis are also detailed. The external standard (ES) method was used to calibrate the GC and quantify the analyte concentrations in this study. The internal standard (IS) method was not used as a quantitative tool in this study. Once the HS-SPME methodology had been set up for the analysis of yoghurts, the classical Static Headspace (SH) method was compared with the HS-SPME method for extraction efficiency. The results suggested that the two methods were complementary in that the SH method extracted the more volatile compounds (acetaldehyde, acetone and 2-butanone) whereas, the HS-SPME method extracted the semi- to non-volatile compounds (ethanol, diacetyl and acetoin) more readily. However, the HS-SPME was found to be the more sensitive and effective method of the two techniques tested. The next step in the thesis was to investigate the presence of the six analytes in milk and cultured yoghurt. The effects of the sample matrix, fat levels and incubation on the volatile concentrations were also examined. The results suggested that the six analytes were inherently present in milks but at low concentrations. No conclusive effects were found for the sample matrix, fat levels and incubation. However, it was evident that fermentation of the milks using bacterial starter cultures resulted in a large increase in some of the volatiles being investigated. Following this, the effects of fat levels, storage time and storage temperature on the six volatiles in yoghurts were examined. The results indicated that significant fat level effects were only seen for diacetyl and acetoin, while temperature effects were only observed for ethanol. In both trials, only general trends for the analytes concentrations were drawn because the data varied from day to day. The results suggested that most of the compounds decreased with time except for diacetyl, which seemed to increase. The final part of this study looked at applying the devised HS-SPME methodology to a series of commercial yoghurts as a preliminary trial, with a view to investigating a potential application for the HS-SPME method. Fourteen commercial yoghurts were analysed and the six analytes quantified. The data obtained was analysed using Principle Component Analysis (PCA), which divided the yoghurts into groups based on their analyte concentrations. From these groupings, eight yoghurts were selected and fresh samples were analysed using HS-SPME and PCA. This was carried out parallel with an untrained consumer panel, which had to distinguish differences between the yoghurts in a series of triangle tests by smelling the headspace on opening the yoghurt containers. The conclusions drawn were that, unlike the HS-SPME method with PCA, the average consumer could not differentiate the yoghurts based on smell alone. PCA also showed that the HS-SPME results obtained were fairly reproducible. In conclusion, the HS-SPME method was shown to be a useful analytical technique, which can be used to analyse and quantify flavour compounds in natural, set yoghurts. This area of investigation has a lot of scope, with the results from this study providing a basis or starting point for further investigations in this area. Future studies may lead to potential applications for the HS-SPME method, one of which may be quality control where correlation of sensory data with HS-SPME analytical data is required
- …
