1,092,657 research outputs found

    An overview of the Lejeuneaceae in Australia

    Get PDF
    As currently understood, the Lejeuneaceae flora of Australia consists of 122 species in 27 genera. The family occurs almost exclusively in rainforested areas along the eastern coast of the continent. Based on species composition, three floristic regions are recognized: tropical, subtropical and temperate. The tropical region contains 80 percent of the total number of Lejeuneaceae found in Australia, the subtropical region contains 45 percent, and the temperate region only 15 percent of the total flora. The affinities of the Lejeuneaceae in the tropical and subtropical regions are strongest with the Asian flora, and those of the temperate region are strongest with the New Zealand flora. The diversity of the Lejeuneaceae flora in Australia is higher than might be expected for a non-equatorial region. This diversity may result from the wide variety of rainforest habitats that are available along both latitudinal and altitudinal gradients. The temperate flora is probably derived from that which existed in Australia, New Zealand, Antarctica and probably southern South America prior to the breakup of Gondwanaland. The modern tropical flora is probably a mixture of species that were part of the original northern Gondwanan flora and those that have invaded more recently

    Students as Learners, Teachers, Critics, and More

    Get PDF

    Floristic response to urbanization: Filtering of the bioregional flora in Indianapolis, Indiana, USA

    Get PDF
    PREMISE OF THE STUDY: Globally, urban plant populations are becoming increasingly important, as these plants play a vital role in ameliorating effects of ecosystem disturbance and climate change. Urban environments act as filters to bioregional flora, presenting survival challenges to spontaneous plants. Yet, because of the paucity of inventory data on plants in landscapes both before and after urbanization, few studies have directly investigated this effect of urbanization. METHODS: We used historical, contemporary, and regional plant species inventories for Indianapolis, Indiana USA to evaluate how urbanization filters the bioregional flora based on species diversity, functional traits, and phylogenetic community structure. KEY RESULTS: Approximately 60% of the current regional flora was represented in the Indianapolis flora, both historically and presently. Native species that survived over time were significantly different in growth form, life form, and dispersal and pollination modes than those that were extirpated. Phylogenetically, the historical flora represented a random sample of the regional flora, while the current urban flora represented a nonrandom sample. Both graminoid habit and abiotic pollination are significantly more phylogenetically conserved than expected. CONCLUSIONS: Our results likely reflect the shift from agricultural cover to built environment, coupled with the influence of human preference, in shaping the current urban flora of Indianapolis. Based on our analyses, the urban environment of Indianapolis does filter the bioregional species pool. To the extent that these filters are shared by other cities and operate similarly, we may see increasingly homogenized urban floras across regions, with concurrent loss of evolutionary information

    North American flora.

    Get PDF
    v. 29, pt. 2 (1938
    corecore