424,748 research outputs found
The Comparison Between Chemical and Natural Extraction In Textile Dyeing With Indigofera
Indigo is categorized as a vat dyes, which is needs to pass a fermentation phase in the extraction process before it could be used as a textile dye due to its lack of fastener substances. Vat dyes are known to be the most solid dye with high endurances compared to other textile dyes according to how the colour will fade caused by acid or alkaline substances. The fermentation process of Indigofera dye could be done using chemical or natural ingredients. Sodium Hydrosulphite could be used in chemical fermentation, while Javanese brown sugar is used in natural fermentation for Indigo dye. This study uses comparative method with material experimental approach. Comparison between the use of Indigofera dye with natrium hydrosulphite fermentations and Indigofera dye with Javanese brown sugar fermentations will be analyzed. this study is purposed to find the advantages and disadvantages in both Indigofera dye substances made of brown sugar fermentation in the vatting process and hydrosulfite fermentation in the vatting process. the results of this study can be used as references in dyeing textile using indigofera for business people, craftsmen, artists, and students in developing their product designs.
Keywords Indigofera dye, natural dyes, extraction, fermentatio
In Vitro Rumen Fermentation and Anti Mastitis Bacterial Activity of Diet Containing Betel Leaf Meal (Piper Betle L.)
The aims of this experiment was to study the inhibition effect of betel leaf meal (BLM) addition into concentrate diet on mastitis causing bacteria and on rumen fermentation condition. The study consisted of five dietary treatments of BLM level in concentrate feed, i.e., 0%, 2%, 4%, 6%, and 8% and four replicates of each treatment. The treatment diets together with napier grass in ratio of 40 : 60 were fermented using rumen liquor. All treatments were examined their antibacterial activity before and after fermentation. After four hours fermentation, supernatant of each samples were analyzed for VFA, NH3, number of bacteria and protozoa. Dry matter (DM) and organic matter (OM) digestibility were analyzed after 48 h fermentation. The results showed that before fermentation, 8% BLM addition caused the bigest (P<0.05) inhibition diameter of Staphylococcus spp. growth compared to other lower levels. However after fermentation there were no significant differences among the addition levels of BLM. Two per cent of BLM addition produced higher VFA (P<0.05) than the other addition levels. Ammoniaconcentration, dry matter (DM) and organic matter (OM) digestibility were not different among the treatments. Addition of BLM significantly (P<0.01) decreased protozoa number, but did not affect bacterial count. It is concluded that the addition of 2% BLM in concentrate feed can be used effectively to inhibit the growth of mastitis causing bacteria (Staphylococcus spp.) and does not disturb rumen fermentation condition
Fermentation Of Multigrain Dough – An Approach To Reduce Glycemic Index For Healthy Bread
The use of sourdough as the starter culture for bread making is one of the oldest processes in food fermentation and is very much prevalent in being used for the manufacture of various multigrain breads. The fermentation process of breads from mixed flours is one way, reported to reduce the glycemic index as compared to white bread. In this paper, we have discussed the use of (autochthonous) native culture vs pure culture use, in fermentation to prepare a starter culture sourdough by propagative fermentation. Since such a dough is incorporated in the sourdough bread making process (1:3), by the initial process of intermittent back-slopping (at intervals of 3.5 and 7 days) to propagate sourdough with a starter culture, as a part of the process, we observed the reduction in glycaemic index of the sourdough itself to as low as GI=40, at 3rd day of fermentation when the pure consortium and at 5th day of fermentation GI=43, when the native consortium was used. The sourdough process is thus an essential tool, aimed to make healthy breads, as it is incorporated as an ingredient in the process, to make sourdough bread
Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis
The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol
demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the
cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process
In Vitro Fermentation Characteristics and Rumen Microbial Population of Diet Supplemented with Saccharomyces Cerevisiae and Rumen Microbe Probiotics
The objective of this study was to select three strains of probiotic Saccharomyces cerevisiae and to evaluate the effect of S. cerevisiae and rumen bacteria isolate (MR4) supplementation and their combination on rumen fermentability and rumen microbial population. Experiment 1 was designed in a 4 x 5 factorial randomized block design with 3 replications. The first factor was S. cerevisiae strain consisted of control treatment (without S. cerevisiae supplementation), NBRC 10217, NRRL Y 567 and NRRL 12618, and the second factor was incubation time consisted of 0, 1, 2, 3, and 4 h. Ration was basal ration for feedlot with forage to concentrate ratio (F:C)= 60:40. Dosage of each treatment with S. cerevisiae was 5 x 1010 cfu/kg ration. Experiment 2 was designed in randomized block design with 4 treatments: P0= basal ration of feedlot; P1= P0 + S. cerevisiae; P2= P0 + MR4 isolate (5 x 107 cfu/kg ration); P3= P0 + S. cerevisiae and MR4 isolate. The result of experiment 1 showed that supplementation of S. cerevisiae NRRL 12618 had the highest S. cerevisiae population and increased rumen bacterial population. This strain was selected as probiotic in experiment 2. The result from experiment 2 showed that probiotic supplementation stabilized rumen pH and produced the highest NH3 concentration (P<0.05) and bacterial population (P<0.05). As compared with control, all treatments reduced protozoa population (P<0.05). Combination of S. cerevisiae and MR4 probiotics produced the highest total volatile fatty acids (VFA) and isovalerate (P<0.05). It was concluded that strain S. cerevisiae NRRL 12618 had potential as probiotic yeast. Supplementation with this strain increased fermentability, rumen isoacid and decreased A:P ratio. Those abilities could be improved with MR4 rumen isolate probiotic
Impact of the co-culture of Saccharomyces cerevisiae–Oenococcus oenion malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction
The present study was aimed to evaluate the impact of the co-culture on the output of malolactic fermentation and to further investigate the reasons of the antagonism exerted by yeasts towards bacteria during sequential cultures. The Saccharomyces cerevisiae D strain/Oenococcus oeni X strain combination was tested by applying both sequential culture and co-culture strategies. This pair was chosen amongst others because the malolactic fermentation was particularly difficult to realize during the sequential culture. During this traditional procedure, malolactic fermentation started when alcoholic fermentation was achieved. For the co-culture, both fermentations were conducted together by inoculating yeasts and bacteria into a membrane bioreactor at the same time. Results obtained during the sequential culture and compared to a bacterial control medium, showed that the inhibition exerted by S. cerevisiae D strain in term of decrease of the malic acid consumption rate was mainly due to ethanol (75%) and to a peptidic fraction (25%) having an MW between 5 and 10 kDa. 0.4 g l-1 of L-malic acid was consumed in this case while 3.7 g l-1 was consumed when the co-culturewas applied. In addition, therewas no risk of increased volatile acidity during the co-culture. Therefore, the co-culture strategy was considered effective for malolactic fermentation with the yeast/bacteria pair studied
The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome.
Many human skin diseases, such as seborrheic dermatitis, potentially occur due to the over-growth of fungi. It remains a challenge to develop fungicides with a lower risk of generating resistant fungi and non-specifically killing commensal microbes. Our probiotic approaches using a selective fermentation initiator of skin commensal bacteria, fermentation metabolites or their derivatives provide novel therapeutics to rein in the over-growth of fungi. Staphylococcus lugdunensis (S. lugdunensis) bacteria and Candida parapsilosis (C. parapsilosis) fungi coexist in the scalp microbiome. S. lugdunensis interfered with the growth of C. parapsilosis via fermentation. A methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymer functioned as a selective fermentation initiator of S. lugdunensis, selectively triggering the S. lugdunensis fermentation to produce acetic and isovaleric acids. The acetic acid and its pro-drug diethyleneglycol diacetate (Ac-DEG-Ac) effectively suppressed the growth of C. parapsilosis in vitro and impeded the fungal expansion in the human dandruff. We demonstrate for the first time that S. lugdunensis is a skin probiotic bacterium that can exploit mPEG-PCL to yield fungicidal short-chain fatty acids (SCFAs). The concept of bacterial fermentation as a part of skin immunity to re-balance the dysbiotic microbiome warrants a novel avenue for studying the probiotic function of the skin microbiome in promoting health
Isolation and characterisation of Sri Lankan yeast germplasm and its evaluation for alcohol production
Use of inferior yeast cultures represents one of the reasons for low fermentation efficiencies in Sri Lankan alcohol distilleries that use sugarcane molasses. The present study isolated and characterised yeast strains found in natural environments in Sri Lanka and evaluated their performance under laboratory conditions in an effort to select superior strains for industrial fermentations. Yeasts were characterised based on morphological and physiological features such as sugar fermentation and nitrate assimilation. Ethanol production, alcohol tolerance and growth rate of the most promising strains were monitored following laboratory fermentations of molasses. Over a thousand yeast cultures were collected and screened for fermentative activity and a total of 83 yeast isolates were characterised as higher ethanol producers. Most of these belonged to the genus Saccharomyces. Certain strains produced over 10% (v/v) alcohol in molasses media during 72 h laboratory fermentations. Only two strains, SL-SRI-C-102 and 111, showed an appreciable fermentation efficiency of about 90%. The latter strain produced the highest level of ethanol, 11% (v/v) within a 48 h fermentation and exhibited improved alcohol tolerance when compared with the baker's yeast strains currently used in Sri Lankan alcohol distilleries. This study highlights the benefits of exploiting indigenous yeasts for industrial fermentation processes
Volatile fatty acids production from fermentation of secondary sewage sludge : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Environmental Engineering
Sludge fermentation is used worldwide as an economical means to produce volatile fatty acids (VFA), which can be used as readily available carbon in biological nutrient removal (BNR) systems. In this research, secondary sludge was tested for its potential to generate VFA. Fermentation of secondary sludge was carried out in a lab-scale sequencing batch reactor (SBR). The SBR was fed with secondary sludge of 1% total solids and run with hydraulic retention time (HRT) of 48 hours and 28 hours in phase 1 (40 days) and phase 2 (12 days) respectively. The SBR produced net VFA (expressed as acetic acid) of 365 ±62.5 mg VFA
HAC
/I which was equivalent to a VFA yield of 0.28 ±0.05 mg VFA
HAC
/mg VSS
feed
during phase 1. A change in operating HRT from 48 hours to 28 hours led to a reduction in solids retention time (SRT) from 2.65 days to 2 days in phase 2. The reduction in SRT during phase 2 led to poor hydrolysis and hence could not support the fermentation. Net VFA generation decreased during phase 2 and reached 0 mg/I. Acetic acid was the main acid produced comprising 45% of total VFA content during the run with 48 hours HRT. The effect of total solids (TS) concentration on secondary sludge fermentation was tested using batch experiments. The batch with 2.8% TS secondary sludge showed a maximum net VFA production of 60 mg VFA
HAC
/I, which appeared to be superior to the 1% TS secondary sludge batch fermentation where no net VFA production observed throughout the test period. Primary sludge (3% TS) exhibited 1200 mg VFA
HAC
/I in a batch fermentation, which was superior to the net VFA produced during secondary sludge (2.8% TS) batch fermentation. The effects of sonication on fermentability of primary and secondary sludges were tested. A sonic power application of 0.0017 Watt/ml/min density increased soluble content of primary and secondary sludges. In batch fermentations, sonicated secondary sludge improved fermentation over unsonicated secondary sludge. A maximum net VFA production of 130 mg VFA
HAC
/I was observed in the secondary sludge batch fermentation. In this research work, an investigation into inhibiting VFA degradation in secondary sludge batch fermentations was also carried out. The effects of a methanogenic bacteria inhibitor (bromoethane sulfonic acid) and low pH (range of 4.02-6.07) were considered. The addition of 1 mM bromoethane sulfonic acid (BES) in secondary sludge (1% TS) batch fermentation successfully inhibited VFA degradation. pH values as low as 4.02 showed an inhibitory effect on secondary sludge (1% TS) batch fermentation which led to poor hydrolysis and hence no net VFA generated during the test period. However, low pH values reduced the VFA degradation rate in the batch fermentations. Secondary sludge used in the present research showed the potential to generate VFA. The amount of VFA produced in the present work showed the potential to improve the performance of a BNR system. Moreover, in batch fermentations, VFA generation was improved using various pre-treatments like sonication and BES addition
接合によりグルコアミラーゼ遺伝子STA1が発現したビール酵母の育種
Standard brewing yeast cannot utilize larger oligomers or dextrins, which represent about 25% of wort sugars. A brewing yeast strain that could ferment these additional sugars to ethanol would be useful for producing low-carbohydrate diabetic or low-calorie beers. In this study, a brewing yeast strain that secretes glucoamylase was constructed by mating. The resulting Saccharomyces cerevisiae 278/113371 yeast was MATa/ diploid, but expressed the glucoamylase gene STA1. At the early phase of the fermentation test in malt extract medium, the fermentation rate of the diploid STA1 strain was slower than those of both the parent strain S. cerevisiae MAFF113371 and the reference strain bottom-fermenting yeast Weihenstephan 34/70. At the later phase of the fermentation test, however, the fermentation rate of the STA1 yeast strain was faster than those of the other strains. The concentration of ethanol in the culture supernatant of the STA1 yeast strain after the fermentation test was higher than those of the others. The concentration of all maltooligosaccharides in the culture supernatant of the STA1 yeast strain after the fermentation test was lower than those of the parent and reference strains, whereas the concentrations of flavor compounds in the culture supernatant were higher. These effects are due to the glucoamylase secreted by the constructed STA1 yeast strain. In summary, a glucoamylase-secreting diploid yeast has been constructed by mating that will be useful for producing novel types of beer owing to its different fermentation pattern and concentrations of ethanol and flavor compound
- …
