1,700 research outputs found

    Longitudinal vehicle dynamics : a comparison of physical and data-driven models under large-scale real-world driving conditions

    Get PDF
    Mathematical models of vehicle dynamics will form essential components of future autonomous vehicles. They may be used within inverse or forward control loops, or within predictive learning systems. Often, nonlinear physical models are used in this context, which, though conceptually simple (especially for decoupled, longitudinal dynamics), may be computationally costly to parameterise and also inaccurate if they omit vehicle-specific dynamics. In this study we sought to determine the relative merits of a commonly used nonlinear physical model of vehicle dynamics versus data-driven models in large-scale real-world driving conditions. To this end, we compared the performance of a standard nonlinear physical model with a linear state-space model and a neural network model. The large-scale experimental data was obtained from two vehicles; a Lancia Delta car and a Jeep Renegade sport utility vehicle. The vehicles were driven on regular, public roads, during normal human driving, across a range of road gradients. Both data-driven models outperformed the physical model. The neural network model performed best for both vehicles; the state-space model performed almost as well as the neural network for the Lancia Delta, but fell short for the Jeep Renegade whose dynamics were more strongly nonlinear. Our results suggest that the linear data-driven model gives a good trade-off in accuracy and simplicity, whilst the neural network model is most accurate and is extensible to more nonlinear operating conditions, and finally that the widely used physical model may not be the best choice for control design

    Vehicle Dynamics, Lateral Forces, Roll Angle, Tire Wear and Road Profile States Estimation - A Review

    Get PDF
    Estimation of vehicle dynamics, tire wear, and road profile are indispensable prefaces in the development of automobile manufacturing due to the growing demands for vehicle safety, stability, and intelligent control, economic and environmental protection. Thus, vehicle state estimation approaches have captured the great interest of researchers because of the intricacy of vehicle dynamics and stability control systems. Over the last few decades, great enhancement has been accomplished in the theory and experiments for the development of these estimation states. This article provides a comprehensive review of recent advances in vehicle dynamics, tire wear, and road profile estimations. Most relevant and significant models have been reviewed in relation to the vehicle dynamics, roll angle, tire wear, and road profile states. Finally, some suggestions have been pointed out for enhancing the performance of the vehicle dynamics models

    2004 Research Engineering Annual Report

    Get PDF
    Selected research and technology activities at Dryden Flight Research Center are summarized. These activities exemplify the Center's varied and productive research efforts

    Survey of Finite Element Method-Based Real-Time Simulations

    Get PDF
    The finite element method (FEM) has deservedly gained the reputation of the most powerful, highly efficient, and versatile numerical method in the field of structural analysis. Though typical application of FE programs implies the so-called “off-line” computations, the rapid pace of hardware development over the past couple of decades was the major impetus for numerous researchers to consider the possibility of real-time simulation based on FE models. Limitations of available hardware components in various phases of developments demanded remarkable innovativeness in the quest for suitable solutions to the challenge. Different approaches have been proposed depending on the demands of the specific field of application. Though it is still a relatively young field of work in global terms, an immense amount of work has already been done calling for a representative survey. This paper aims to provide such a survey, which of course cannot be exhaustive

    Towards Intelligent Tire and Self-Powered Sensing Systems

    Get PDF
    Tires are the interface between a vehicle and the ground providing forces and isolation to the vehicle. For vehicle safety, stability, maintenance, and performance, it is vital to estimate or measure tire forces, inflation pressure, and contact friction coefficient. Estimation methods can predict tire forces to some extent however; they fail in harsh maneuvers and are dependent on road surface conditions for which there is no robust estimation method. Measurement devices for tire forces exist for vehicle testing but at the cost of tens of thousands of dollars. Tire pressure-monitoring sensors (TPMS) are the only sensors available in newer and higher end vehicles to provide tire pressure, but there are no sensors to measure road surface condition or tire forces for production vehicles. With the prospect of autonomous driving on roads in near future, it is paramount to make the vehicles safe on any driving and road condition. This is only possible by additional sensors to make up for the driver’s cognitive and sensory system. Measuring road condition and tire forces especially in autonomous vehicles are vital in their safety, reliability, and public confidence in automated driving. Real time measurement of road condition and tire forces in buses and trucks can significantly improve the safety of road transportation system, and in miming/construction and off-road vehicles can improve performance, tire life and reduce operational costs. In this thesis, five different types of sensors are designed, modelled, optimized and fabricated with the objective of developing an intelligent tire. In order to design these sensors,~both electromagnetic generator (EMG) and triboelectric nanogenerators (TENG) are used. In the first two initial designed sensors, with the combination of EMG and TENG into a single package, two hybridized sensors are fabricated with promising potential for self-powered sensing. The potential of developed sensors are investigated for tire-condition monitoring system (TCMS). Considering the impressive properties of TENG units of the developed hybridized devices, three different flexible nanogenerators, only based on this newly developed technology, are developed for TCMS. The design, modelling, working mechanism, fabrication procedure, and experimental results of these TENG sensors are fully presented for applications in TCMS. Among these three fabricated sensors, one of them shows an excellent capability for TCMS because of its high flexibility, stable and high electrical output,and an encapsulated structure. The high flexibility of developed TENG sensor is a very appealing feature for TCMS, which cannot be found in any available commercial sensor. The fabricated TENG sensors are used for developing an intelligent tire module to be eventually used for road testing. Several laboratory and road tests are performed to study the capability of this newly developed TENG-based sensor for tire-condition monitoring system. However the development of this sensor is in its early stage, it shows a promising potential for installation into the hostile environment of tires and measuring tire-road interacting forces. A comparative studies are provided with respect to Michigan Scientific transducer to investigate the potential of this flexible nanogenerator for TCMS. It is worth mentioning that this PhD thesis presents one of the earliest works on the application of TENG-based sensor for a real-life system. Also, the potential of commercially available thermally and mechanically durable Micro Fiber Composite (MFC) sensor is experimentally investigated for TCMS with fabricating another set of intelligent tire. Several testing scenarios are performed to examine the potential of these sensors for TCMS taking into account a simultaneous measurement from Michigan Scientific transducer. Although both flexibility and the cost of this sensor is not comparable with the fabricated TENG device, they have shown a considerable and reliable performance for online measuring of tire dynamical parameters in different testing scenarios, as they can be used for both energy harvesting and sensing application in TCMS. The extensive road testing results based on the MFC sensors provide a valuable set of data for future research in TCMS. It is experimentally shown that MFC sensor can generate up to 1.4 ÎŒW\mu W electrical power at the speed of 28 [kph][kph]. This electrical output shows the high capability of this sensor for self-powered sensing application in TCMS. Results of this thesis can be used as a framework by researchers towards self-powered sensing system for real-world applications such as intelligent tires

    Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models

    Get PDF
    A full-scale crash test is conventionally used for vehicle crashworthiness analysis. However, this approach is expensive and time-consuming. Vehicle crash reconstructions using different numerical modelling approaches can predict vehicle behavior and reduce the need for multiple full-scale crash tests, thus research on the crash reconstruction has received a great attention in the last few decades. Among modelling approaches, lumped parameters models (LPM) and finite element models (FEM) are commonly used in the vehicle crash reconstruction. This thesis focuses on developing and improving the LPM for vehicle frontal crash analysis. The study aims at reconstructing crash scenarios for vehicle-to-barrier (VTB), vehicleoccupant (V-Occ), and vehicle-to-vehicle (VTV), respectively. In this study, a single mass-spring-damper (MSD) is used to simulate a vehicle to-barrier or a wall. A double MSD is used to model the response of the chassis and passenger compartment in a frontal crash, a vehicle-occupant, and a vehicle-tovehicle, respectively. A curve fitting, state-space, and genetic algorithm are used to estimate parameters of the model for reconstructing the vehicle crash kinematics. Further, the piecewise LPM is developed to mimic the crash characteristics for VTB, VO, and VTV crash scenarios, and its predictive capability is compared with the explicit FEM. Within the framework, the advantages of the proposed methods are explained in detail, and suggested solutions are presented to address the limitations in the study.publishedVersio

    Numerical Computation, Data Analysis and Software in Mathematics and Engineering

    Get PDF
    The present book contains 14 articles that were accepted for publication in the Special Issue “Numerical Computation, Data Analysis and Software in Mathematics and Engineering” of the MDPI journal Mathematics. The topics of these articles include the aspects of the meshless method, numerical simulation, mathematical models, deep learning and data analysis. Meshless methods, such as the improved element-free Galerkin method, the dimension-splitting, interpolating, moving, least-squares method, the dimension-splitting, generalized, interpolating, element-free Galerkin method and the improved interpolating, complex variable, element-free Galerkin method, are presented. Some complicated problems, such as tge cold roll-forming process, ceramsite compound insulation block, crack propagation and heavy-haul railway tunnel with defects, are numerically analyzed. Mathematical models, such as the lattice hydrodynamic model, extended car-following model and smart helmet-based PLS-BPNN error compensation model, are proposed. The use of the deep learning approach to predict the mechanical properties of single-network hydrogel is presented, and data analysis for land leasing is discussed. This book will be interesting and useful for those working in the meshless method, numerical simulation, mathematical model, deep learning and data analysis fields

    An Algorithm for Parameter Identification of UAS from Flight Data

    Get PDF
    The aim of the present work is to realize an identification algorithm especially devoted to UAS (unmanned aerial systems). Because UAS employ low cost sensor, very high measurement noise has to be taken into account. Therefore, due to both modelling errors and atmospheric turbulence, noticeable system noise has also to be considered. To cope with both the measurement and system noise, the identification problem addressed in this work is solved by using the FEM (filter error method) approach. A nonlinear mathematical model of the subject aircraft longitudinal dynamics has been tuned up through semi-empirical methods, numerical simulations and ground tests. To take into account model nonlinearities, an EKF (extended Kalman filter) has been implemented to propagate the state. A procedure has been tuned up to determine either aircraft parameters or the process noise. It is noticeable that, because the system noise is treated as unknown parameter, it is possible to identify system affected by noticeable modelling errors. Therefore, the obtained values of process noise covariance matrix can be used to highlight system failure. The obtained results show that the algorithm requires a short computation time to determine aircraft parameter with noticeable precision by using low computation power. The present procedure could be employed to determine the system noise for various mechanical systems, since it is particularly devoted to systems which present dynamics that are difficult to model. Finally, the tuned up off-line EKF should be employed to on-line estimation of either state or unmeasurable inputs like atmospheric turbulence

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Nonlinear Spring-Mass-Damper Modeling and Parameter Estimation of Train Frontal Crash Using CLGAN Model

    Get PDF
    Due to the complexity of a train crash, it is a challenging process to describe and estimate mathematically. Although different mathematical models have been developed, it is still difficult to balance the complexity of models and the accuracy of estimation. ,is paper proposes a nonlinear spring-mass-damper model of train frontal crash, which achieves high accuracy and maintains low complexity. ,e Convolutional Long-short-term-memory Generation Adversarial Network (CLGAN) model is applied to study the nonlinear parameters dynamic variation of the key components of a rail vehicle (e.g., the head car, anticlimbing energy absorber, and the coupler buffer devices). Firstly, the nonlinear lumped model of train frontal crash is built, and then the physical parameters are deduced in twenty different cases using D’Alembert’s principle. Secondly, the input/output relationship of the CLGAN model is determined, where the inputs are the nonlinear physical parameters in twenty initial conditions, and the output is the nonlinear relationship between the train crash nonlinear parameters under other initial cases. Finally, the train crash dynamic characteristics are accurately estimated during the train crash processes through the training of the CLGAN model, and then the crash processes under different given conditions can be described effectively. ,e estimation results exhibit good agreement with finite element (FE) simulations and experimental results. Furthermore, the CLGAN model shows great potential in nonlinear estimation, and CLGAN can better describe the variation of nonlinear spring damping compared with the traditional model. ,e nonlinear spring-mass-damper modeling is involved in improving the speed and accuracy of the train crash estimation, as well as being able to offer guidance for structure optimization in the early design stage
    • 

    corecore