175,624 research outputs found

    Feature Selection Library (MATLAB Toolbox)

    Full text link
    Feature Selection Library (FSLib) is a widely applicable MATLAB library for Feature Selection (FS). FS is an essential component of machine learning and data mining which has been studied for many years under many different conditions and in diverse scenarios. These algorithms aim at ranking and selecting a subset of relevant features according to their degrees of relevance, preference, or importance as defined in a specific application. Because feature selection can reduce the amount of features used for training classification models, it alleviates the effect of the curse of dimensionality, speeds up the learning process, improves model's performance, and enhances data understanding. This short report provides an overview of the feature selection algorithms included in the FSLib MATLAB toolbox among filter, embedded, and wrappers methods.Comment: Feature Selection Library (FSLib) 201

    Temporal Feature Selection with Symbolic Regression

    Get PDF
    Building and discovering useful features when constructing machine learning models is the central task for the machine learning practitioner. Good features are useful not only in increasing the predictive power of a model but also in illuminating the underlying drivers of a target variable. In this research we propose a novel feature learning technique in which Symbolic regression is endowed with a ``Range Terminal\u27\u27 that allows it to explore functions of the aggregate of variables over time. We test the Range Terminal on a synthetic data set and a real world data in which we predict seasonal greenness using satellite derived temperature and snow data over a portion of the Arctic. On the synthetic data set we find Symbolic regression with the Range Terminal outperforms standard Symbolic regression and Lasso regression. On the Arctic data set we find it outperforms standard Symbolic regression, fails to beat the Lasso regression, but finds useful features describing the interaction between Land Surface Temperature, Snow, and seasonal vegetative growth in the Arctic

    EFSIS: Ensemble Feature Selection Integrating Stability

    Get PDF
    Ensemble learning that can be used to combine the predictions from multiple learners has been widely applied in pattern recognition, and has been reported to be more robust and accurate than the individual learners. This ensemble logic has recently also been more applied in feature selection. There are basically two strategies for ensemble feature selection, namely data perturbation and function perturbation. Data perturbation performs feature selection on data subsets sampled from the original dataset and then selects the features consistently ranked highly across those data subsets. This has been found to improve both the stability of the selector and the prediction accuracy for a classifier. Function perturbation frees the user from having to decide on the most appropriate selector for any given situation and works by aggregating multiple selectors. This has been found to maintain or improve classification performance. Here we propose a framework, EFSIS, combining these two strategies. Empirical results indicate that EFSIS gives both high prediction accuracy and stability.Comment: 20 pages, 3 figure

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development
    • …
    corecore