349,500 research outputs found

    Micromagnetic simulations of spinel ferrite particles

    Full text link
    This paper presents the results of simulations of the magnetization field {\it ac} response (at 22 to 1212 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M1n_{1-n}Znn_{n}Fe2_2O4_4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0n=0: M = \{ Fe, Mn, Co, Ni, Mg, Cu \}; (b) for n=0.1n=0.1: M = \{ Fe, Mg \} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = \{ Mg, Cu \} ferrites. A comparison of the n=0n=0 and n=0.1n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M = Fe case. An additional larger scale simulation of a 33 by 33 particle array was performed using similar conditions of the Fe3_3O4_4 (magnetite; n=0n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe3_3O4_4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.Comment: 35 pages, 11 figures, Journal of Magnetism and Magnetic Materials, in press

    Knowledge based cloud FE simulation of sheet metal forming processes

    Get PDF
    The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions

    Finite element analysis of forward extrusion of 1010 steel

    Get PDF
    Reliability of FE simulation of metal forming processes depends critically on the proper definition of material properties, the friction boundary conditions and details of the FE approach. To address these issues, the room temperature strain hardening behaviour of 1010 steel was established by performing a uniaxial compression test for the true strain of up to 1.5. Friction was evaluated using a ring test, with the two faces of the ring coated with a phosphate conversion layer and soap; the friction experimental results were matched with the FE established reference curves. The experimentally obtained material and friction input data were used in FE simulation, employing Arbitrary Lagrangian Eulerian adaptive meshing, to provide a valuable insight into the process of forward extrusion of an industrial component

    Thermo-micro-mechanical simulation of bulk metal forming processes

    Full text link
    The newly proposed microstructural constitutive model for polycrystal viscoplasticity in cold and warm regimes (Motaman and Prahl, 2019), is implemented as a microstructural solver via user-defined material subroutine in a finite element (FE) software. Addition of the microstructural solver to the default thermal and mechanical solvers of a standard FE package enabled coupled thermo-micro-mechanical or thermal-microstructural-mechanical (TMM) simulation of cold and warm bulk metal forming processes. The microstructural solver, which incrementally calculates the evolution of microstructural state variables (MSVs) and their correlation to the thermal and mechanical variables, is implemented based on the constitutive theory of isotropic hypoelasto-viscoplastic (HEVP) finite (large) strain/deformation. The numerical integration and algorithmic procedure of the FE implementation are explained in detail. Then, the viability of this approach is shown for (TMM-) FE simulation of an industrial multistep warm forging

    Computer simulations of iron in magnesium silicate perovskite

    Get PDF
    We use atomistic computer simulation techniques to investigate the site partitioning of iron in (Mg,Fe)SiO_{3} perovskites. Our calculations predict that the most energetically favourable reaction for iron substitution will be a direct exchange of Fe^{2+} for Mg^{2+}. Substitution of Fe into the octahedral site and Si into the 8–12 fold coordinated site, as proposed by Jackson et al. [1987], is predicted to be extremely unlikely

    Unequal Intra-layer Coupling in a Bilayer Driven Lattice Gas

    Full text link
    The system under study is a twin-layered square lattice gas at half-filling, being driven to non-equilibrium steady states by a large, finite `electric' field. By making intra-layer couplings unequal we were able to extend the phase diagram obtained by Hill, Zia and Schmittmann (1996) and found that the tri-critical point, which separates the phase regions of the stripped (S) phase (stable at positive interlayer interactions J_3), the filled-empty (FE) phase (stable at negative J_3) and disorder (D), is shifted even further into the negative J_3 region as the coupling traverse to the driving field increases. Many transient phases to the S phase at the S-FE boundary were found to be long-lived. We also attempted to test whether the universality class of D-FE transitions under a drive is still Ising. Simulation results suggest a value of 1.75 for the exponent gamma but a value close to 2.0 for the ratio gamma/nu. We speculate that the D-FE second order transition is different from Ising near criticality, where observed first-order-like transitions between FE and its "local minimum" cousin occur during each simulation run.Comment: 29 pages, 19 figure

    Density functional simulation of small Fe nanoparticles

    Full text link
    We calculate from first principles the electronic structure, relaxation and magnetic moments in small Fe particles, applying the numerical local orbitals method in combination with norm-conserving pseudopotentials. The accuracy of the method in describing elastic properties and magnetic phase diagrams is tested by comparing benchmark results for different phases of crystalline iron to those obtained by an all-electron method. Our calculations for the bipyramidal Fe_5 cluster qualitatively and quantitatively confirm previous plane-wave results that predicted a non-collinear magnetic structure. For larger bcc-related (Fe_35) and fcc-related (Fe_38, Fe_43, Fe_62) particles, a larger inward relaxation of outer shells has been found in all cases, accompanied by an increase of local magnetic moments on the surface to beyond 3 mu_B.Comment: 15 pages with 6 embedded postscript figures, updated version, submitted to Eur.Phys.J.

    Expanded Iron UTA spectra -- probing the thermal stability limits in AGN clouds

    Get PDF
    The Fe unresolved transition array (UTAs) produce prominent features in the 15-17?A wavelength range in the spectra of Active Galactic Nuclei (AGN). Here we present new calculations of the energies and oscillator strengths of inner- shell lines from Fe XIV, Fe XV, and Fe XVI. These are crucial ions since they are dominant at inflection points in the gas thermal stability curve, and UTA excitation followed by autoionization is an important ionization mechanism for these species. We incorporate these, and data reported in previous papers, into the plasma simulation code Cloudy. This updated physics is subsequently employed to reconsider the thermally stable phases in absorbing media in Active Galactic Nuclei. We show how the absorption profile of the Fe XIV UTA depends on density, due to the changing populations of levels within the ground configuration.Comment: ApJ in pres

    Spin Dependent Tunneling in FM|semiconductor|FM structures

    Full text link
    Here we show that ordinary band structure codes can be used to understand the mechanisms of coherent spin-injection at interfaces between ferromagnets and semiconductors. This approach allows the screening of different material combinations for properties useful for obtaining high tunneling magnetoresistance (TMR). We used the Vienna Ab-initio Simulation Code (VASP) to calculate the wave function character of each band in periodic epitaxial Fe(100)|GaAs(100) and Fe(100)|ZnSe(100) structures. It is shown that Fe wave functions of different symmetry near Fermi energy decay differently in the GaAs and ZnSe.Comment: Accepted for publication in MMM'05 Proceedings. 7 pages, 5 figure
    corecore