1,850,571 research outputs found

    Stellar Iron Abundances at the Galactic Center

    Get PDF
    We present measurements of [Fe/H] for six M supergiant stars and three giant stars within 0.5 pc of the Galactic Center (GC) and one M supergiant star within 30 pc of the GC. The results are based on high-resolution (lambda / Delta lambda =40,000) K-band spectra, taken with CSHELL at the NASA Infrared Telescope Facility.We determine the iron abundance by detailed abundance analysis,performed with the spectral synthesis program MOOG.The mean [Fe/H] of the GC stars is determined to be near solar,[Fe/H] = +0.12 ±\pm 0.22. Our analysis is a differential analysis, as we have observed and applied the same analysis technique to eleven cool, luminous stars in the solar neighborhood with similar temperatures and luminosities as the GC stars. The mean [Fe/H] of the solar neighborhood comparison stars, [Fe/H] = +0.03 ±\pm 0.16, is similar to that of the GC stars. The width of the GC [Fe/H] distribution is found to be narrower than the width of the [Fe/H] distribution of Baade's Window in the bulge but consistent with the width of the [Fe/H] distribution of giant and supergiant stars in the solar neighborhood.Comment: 41 pages, 9 figures, ApJ, in pres

    Strategy for the identification of micro-organisms producing food and feed products : bacteria producing food enzymes as study case

    Get PDF
    Recent European regulations require safety assessments of food enzymes (FE) before their commercialization. FE are mainly produced by micro-organisms, whose viable strains nor associated DNA can be present in the final products. Currently, no strategy targeting such impurities exists in enforcement laboratories. Therefore, a generic strategy of first line screening was developed to detect and identify, through PCR amplification and sequencing of the 16S-rRNA gene, the potential presence of FE producing bacteria in FE preparations. First, the specificity was verified using all microbial species reported to produce FE. Second, an in-house database, with 16S reference sequences from bacteria producing FE, was constructed for their fast identification through blast analysis. Third, the sensitivity was assessed on a spiked FE preparation. Finally, the applicability was verified using commercial FE preparations. Using straightforward PCR amplifications, Sanger sequencing and blast analysis, the proposed strategy was demonstrated to be convenient for implementation in enforcement laboratories

    High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    Get PDF
    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set that allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca II K 3933A line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan-MIKE high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. 41 stars have [Fe/H] <= -3.0. Nine have [Fe/H] <= -3.5, with three at [Fe/H] ~ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] [X/Fe values appears to be "Fe-enhanced," while another star has an extremely large [Sr/Ba] ratio: >2. Only one other star is known to have a comparable value. Seven stars are "CEMP-no" stars ([C/Fe] > 0.7, [Ba/Fe] < 0). 21 stars exhibit mild r-process element enhancements (0.3 <=[Eu/Fe] < 1.0), while four stars have [Eu/Fe] >= 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future.Comment: Minor corrections to text, missing data added to Tables 3 and 4; updated to match published version. Complete tables included in sourc

    The Solar Flare Iron Abundance

    Full text link
    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in {\em RHESSI} X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz. an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe)=7.91±0.10A({\rm Fe}) = 7.91 \pm 0.10 (on a logarithmic scale, with A(H)=12A({\rm H}) = 12), or 2.6±0.62.6 \pm 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1,898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe)A({\rm Fe}) has important implications for radiation loss curves, which are estimated.Comment: Accepted by Astrophysical Journa

    Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite

    Full text link
    The role of the synthesis conditions on the cationic Fe/Mo ordering in Sr2FeMoO6 double perovskite is addressed. It is shown that this ordering can be controlled and varied systematically. The Fe/Mo ordering has a profound impact on the saturation magnetization of the material. Using the appropriate synthesis protocol a record value of 3.7muB/f.u. has been obtained. Mossbauer analysis reveals the existence of two distinguishable Fe sites in agreement with the P4/mmm symmetry and a charge density at the Fe(m+) ions significantly larger than (+3) suggesting a Fe contribution to the spin-down conduction band. The implications of these findings for the synthesis of Sr2FeMoO6 having optimal magnetoresistance response are discussed.Comment: 9 pages, 4 figure

    The Space Interferometry Mission Astrometric Grid Giant-Star Survey. III. Basic Stellar Parameters for an Extended Sample

    Full text link
    We present results of high resolution (~ 55000) spectral observations of 830 photometrically pre-selected candidate red giants in the magnitude range of V = 9-12. We develop a pipeline for automated determination of the stellar atmospheric parameters from these spectra and estimate T_eff, logg, [Fe/H], microturbulence velocity, and projected rotational velocities, vsini, for the stars. The analysis confirms that the candidate selection procedure yielded red giants with very high success rate. We show that most of these stars are G and K giants with slightly subsolar metallicity ([Fe/H] ~ -0.3 dex) An analysis of Mg abundances in the sample results in consistency of the [Mg/Fe] vs [Fe/H] trend with published results.Comment: Accepted by A

    A physically motivated and empirically calibrated method to measure effective temperature, metallicity, and Ti abundance of M dwarfs

    Get PDF
    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analysis of M-dwarf stars. Empirically-calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R~25,000), Y-band (~1 micron) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH bandhead. We used abundances measured from widely-separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in Teff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively and is calibrated for 3200 K < Teff < 4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.Comment: accepted for publication in ApJ, all synthetic spectra available at http://people.bu.edu/mveyette/phoenix
    corecore