12,924 research outputs found

    Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films

    Get PDF
    We apply the technique of far-field interferometry to measure the properties of surface waves generated by two-dimensional (2D) single subwavelength slit-groove structures on gold films. The effective surface index of refraction measured for the surface wave propagating over a distance of more than 12 microns is determined to be 1.016 with a measurement uncertainty of 0.004, to within experimental uncertainty of the expected bound surface plasmon-polariton (SPP) value for a Au/Air interface of 1.018. We compare these measurements to finite-difference-time-domain (FDTD) numerical simulations of the optical field transmission through these devices. We find excellent agreement between the measurements and the simulations for the surface index of refraction. The measurements also show that the surface wave propagation parameter exhibits transient behavior close to the slit, evolving smoothly from greater values asymptotically toward the value expected for the SPP over the first 2-3 microns of slit-groove distance. This behavior is confirmed by the FDTD simulations

    Quantitative test of general theories of the intrinsic laser linewidth

    Full text link
    We perform a first-principles calculation of the quantum-limited laser linewidth, testing the predictions of recently developed theories of the laser linewidth based on fluctuations about the known steady-state laser solutions against traditional forms of the Schawlow-Townes linewidth. The numerical study is based on finite-difference time-domain simulations of the semiclassical Maxwell-Bloch lasing equations, augmented with Langevin force terms, and thus includes the effects of dispersion, losses due to the open boundary of the laser cavity, and non-linear coupling between the amplitude and phase fluctuations (α\alpha factor). We find quantitative agreement between the numerical results and the predictions of the noisy steady-state ab initio laser theory (N-SALT), both in the variation of the linewidth with output power, as well as the emergence of side-peaks due to relaxation oscillations.Comment: 24 pages, 10 figure

    Steady-State Ab Initio Laser Theory for N-level Lasers

    Full text link
    We show that Steady-state Ab initio Laser Theory (SALT) can be applied to find the stationary multimode lasing properties of an N-level laser. This is achieved by mapping the N-level rate equations to an effective two-level model of the type solved by the SALT algorithm. This mapping yields excellent agreement with more computationally demanding N-level time domain solutions for the steady state

    Accurate Modelling of Left-Handed Metamaterials Using Finite-Difference Time-Domain Method with Spatial Averaging at the Boundaries

    Full text link
    The accuracy of finite-difference time-domain (FDTD) modelling of left-handed metamaterials (LHMs) is dramatically improved by using an averaging technique along the boundaries of LHM slabs. The material frequency dispersion of LHMs is taken into account using auxiliary differential equation (ADE) based dispersive FDTD methods. The dispersive FDTD method with averaged permittivity along the material boundaries is implemented for a two-dimensional (2-D) transverse electric (TE) case. A mismatch between analytical and numerical material parameters (e.g. permittivity and permeability) introduced by the time discretisation in FDTD is demonstrated. The expression of numerical permittivity is formulated and it is suggested to use corrected permittivity in FDTD simulations in order to model LHM slabs with their desired parameters. The influence of switching time of source on the oscillation of field intensity is analysed. It is shown that there exists an optimum value which leads to fast convergence in simulations.Comment: 17 pages, 7 figures, submitted to Journal of Optics A Nanometa special issu

    Limits on the amplification of evanescent waves of left-handed materials

    Full text link
    We investigate the transfer function of the discretized perfect lens in finite-difference time-domain (FDTD) and transfer matrix (TMM) simulations; the latter allow to eliminate the problems associated with the explicit time dependence in FDTD simulations. We argue that the peak observed in the FDTD transfer function near the maximum parallel momentum k∥,maxk_{\|,\mathrm{max}} is due to finite time artifacts. We also find the finite discretization mesh acts like imaginary deviations from μ=ϵ=−1\mu=\epsilon=-1 and leads to a cross-over in the transfer function from constance to exponential decay around k∥,maxk_{\|,\mathrm{max}} limiting the attainable super-resolution. We propose a simple qualitative model to describe the impact of the discretization. k∥,maxk_{\|,\mathrm{max}} is found to depend logarithmically on the mesh constant in qualitative agreement with the TMM simulations.Comment: 4 pages, 3 figure
    • …
    corecore