18,120 research outputs found
Force and torque acting on particles in a transitionally rough open channel flow
Direct numerical simulation of open channel flow over a geometrically rough
wall has been performed at a bulk Reynolds number of approximately 2900. The
wall consisted of a layer of spheres in a square arrangement. Two cases have
been considered. In the first case the spheres are small (with diameter
equivalent to 10.7 wall units) and the limit of the hydraulically smooth flow
regime is approached. In the second case the spheres are more than three times
larger (49.3 wall units) and the flow is in the transitionally rough flow
regime. Special emphasis is given on the characterisation of the force and
torque acting on a particle due to the turbulent flow. It is found that in both
cases the mean drag, lift and spanwise torque are to a large extent produced at
the top region of the particle surface. The intensity of the particle force
fluctuations is significantly larger in the large-sphere case, while the trend
differs for the fluctuations of the individual components of the torque. A
simplified model is used to show that the torque fluctuations might be
explained by the spheres acting as a filter with respect to the size of the
flow scales which can effectively generate torque fluctuations. Fluctuations of
both force and torque are found to exhibit strongly non-Gaussian probability
density functions with particularly long tails, an effect which is more
pronounced in the small-sphere case. Some implications of the present results
for sediment erosion are briefly discussed.Comment: accepted for publication in J. Fluid Mech. (2011
The phenolic complex in flaxseed
Flaxseed is the richest plant source of the lignan secoisolariciresinol diglucoside (SDG). In flaxseed, SDG exists in an oligomeric structure with 3-hydroxy-3-methyl glutaric acid (HMGA) forming a phenolic complex together with p-coumaric acid and ferulic acid glucosides and herbacetin diglucoside (HDG). Epidemiological and animal studies indicate protective effects of flaxseed and SDG towards hormone-dependent cancers and cardiovascular diseases, and reducing effect toward cholesterol levels in blood. Knowledge about the structural features and properties of the phenolic complex are required to further understand bioavailability, bioconversion and bioactivity of flaxseed lignans in humans and animals, the biosynthesis in flaxseed, as well as if it may affect technology and quality of food products containing flaxseed or the phenolic complex. A new fast and simple high-performance liquid chromatographic (HPLC) method was developed for analysing secoisolariciresinol diglucoside (SDG), p-coumaric acid glucoside and ferulic acid glucoside, based on direct hydrolysis of defatted flaxseed flour using alkali. Variations in SDG, p-coumaric acid glucoside and ferulic acid glucoside content were reported in flaxseed samples and bread products containing flaxseed. The composition and properties of flaxseed phenolic complex were studied by reversed-phase liquid chromatography and gel filtration fractionation. Results indicate that the phenolic glucosides exist in oligomers with variable molecular sizes. A complicated linkage pattern and/or possibly interactions with other components may contribute to the observed complexity. SDG and the phenolic complex showed similar hydrogen-donating abilities to ferulic acid but higher than α-tocopherol in the DPPH inhibition metod, suggesting that SDG was the only active antioxidant in the phenolic complex. Contradicting results were obtained on the effect of SDG on levels of Vitamin E and cholesterol in two rat studies
Life cycle assessment of a column supported isostatic beam in high-volume fly ash concrete (HVFA concrete)
Nowadays, a lot of research is being conducted on high-volume fly ash (HVFA) concrete. However, a precise quantification of the environmental benefit is almost never provided. To do this correctly, we adopted a life cycle (LCA) approach. By considering a simple structure and an environment for the material, differences between traditional and HVFA concrete regarding durability and strength were taken into account. This paper presents the LCA results for a column supported isostatic beam made of reinforced HVFA concrete located in a dry environment exposed to carbonation induced corrosion. With a binder content of 425 kg/m3 and a water-to-binder ratio of 0.375, the estimated carbonation depth after 50 years for a 50 % fly ash mixture does not exceed the nominal concrete cover of 20 mm. As a consequence, no additional concrete manufacturing for structure repair needs to be included in the study. Moreover, structure dimensions can be reduced significantly due to a higher strength compared to the reference concrete used in the same environment. In total, about 32 % of cement can be saved this way. The reduction in environmental impact equals 25.8 %, while this is only 11.4 % if the higher material strength is not considered
Dialect recognition and speech community focusing in new and old towns in England : the effects of dialect levelling, demography and social networks.
Accelerated and natural carbonation of concrete with high volumes of fly ash : chemical, mineralogical and microstructural effects
Today, a rather poor carbonation resistance is being reported for high-volume fly ash (HVFA) binder systems. This conclusion is usually drawn from accelerated carbonation experiments conducted at CO2 levels that highly exceed the natural atmospheric CO2 concentration of 0.03-0.04%. However, such accelerated test conditions may change the chemistry of the carbonation reaction (and the resulting amount of CH and C-S-H carbonation), the nature of the mineralogical phases formed (stable calcite versus metastable vaterite, aragonite) and the resulting porosity and pore size distribution of the microstructure after carbonation. In this paper, these phenomena were studied on HVFA and fly ash thorn silica fume (FA + SF) pastes after exposure to 0.03-0.04%, 1% and 10% CO2 using thermogravimetric analysis, quantitative X-ray diffraction and mercury intrusion porosimetry. It was found that none of these techniques unambiguously revealed the reason for significantly underestimating carbonation rates at 1% CO2 from colorimetric carbonation test results obtained after exposure to 10% CO2 that were implemented in a conversion formula that solely accounts for the differences in CO2 concentration. Possibly, excess water production due to carbonation at too high CO2 levels with a pore blocking effect and a diminished solubility for CO2 plays an important role in this
Chaos and Thermal Noise in a Josephson Junction Coupled to a Resonant Tank
Selected dynamical modes are investigated for the autonomous system formed from a dc biased Josephson junction which is resistively coupled to a resonant tank. A hysteretic zone in the current-voltage characteristic is shown to result from coexisting chaotic and periodic states. The detailed features of these states, including the geometrical structure of the attractors and their basins of attraction, as well as thermally induced transitions between them, are explored
Global Welfare and Trade-Related Regulations of GM Food: Biosafety, Markets, and Politics
Replaced with revised version of paper 07/22/10.Genetically modified food, international trade, regulations, political economics., Agricultural and Food Policy, International Relations/Trade, Political Economy, Research and Development/Tech Change/Emerging Technologies, Q17, Q18, F50,
Combined STEREO/RHESSI study of CME acceleration and particle acceleration in solar flares
Using the potential of two unprecedented missions, STEREO and RHESSI, we
study three well observed fast CMEs that occurred close to the limb together
with their associated high energy flare emissions in terms of RHESSI HXR
spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data the full CME
kinematics of the impulsive acceleration phase up to 4 Rs is measured with a
high time cadence of less equal 2.5 min. For deriving CME velocity and
acceleration we apply and test a new algorithm based on regularization methods.
The CME maximum acceleration is achieved at heights h < 0.4 Rs, the peak
velocity at h < 2.1 Rs (in one case as small as 0.5 Rs). We find that the CME
acceleration profile and the flare energy release as evidenced in the RHESSI
hard X-ray flux evolve in a synchronized manner. These results support the
standard flare/CME model which is characterized by a feed-back relationship
between the large-scale CME acceleration process and the energy release in the
associated flare.Comment: accepted for Ap
- …
