5 research outputs found

    Global research of artificial intelligence in strabismus: a bibliometric analysis

    Get PDF
    PurposeTo analyze the global publications on artificial intelligence (AI) in strabismus using a bibliometric approach.MethodsThe Web of Science Core Collection (WoSCC) database was used to retrieve all of the publications on AI in strabismus from 2002 to 2023. We analyzed the publication and citation trend and identified highly-cited articles, prolific countries, institutions, authors and journals, relevant research domains and keywords. VOSviewer (software) and Bibliometrix (package) were used for data analysis and visualization.ResultsBy analyzing a total of 146 relevant publications, this study found an overall increasing trend in the number of annual publications and citations in the last decade. USA was the most productive country with the closest international cooperation. The top 3 research domains were Ophthalmology, Engineering Biomedical and Optics. Journal of AAPOS was the most productive journal in this field. The keywords analysis showed that ā€œdeep learningā€ and ā€œmachine learningā€ may be the hotspots in the future.ConclusionIn recent years, research on the application of AI in strabismus has made remarkable progress. The future trends will be toward optimized technology and algorithms. Our findings help researchers better understand the development of this field and provide valuable clues for future research directions

    Scanpath modeling and classification with Hidden Markov Models

    Get PDF
    How people look at visual information reveals fundamental information about them; their interests and their states of mind. Previous studies showed that scanpath, i.e., the sequence of eye movements made by an observer exploring a visual stimulus, can be used to infer observer-related (e.g., task at hand) and stimuli-related (e.g., image semantic category) information. However, eye movements are complex signals and many of these studies rely on limited gaze descriptors and bespoke datasets. Here, we provide a turnkey method for scanpath modeling and classification. This method relies on variational hidden Markov models (HMMs) and discriminant analysis (DA). HMMs encapsulate the dynamic and individualistic dimensions of gaze behavior, allowing DA to capture systematic patterns diagnostic of a given class of observers and/or stimuli. We test our approach on two very different datasets. Firstly, we use fixations recorded while viewing 800 static natural scene images, and infer an observer-related characteristic: the task at hand. We achieve an average of 55.9% correct classification rate (chance = 33%). We show that correct classification rates positively correlate with the number of salient regions present in the stimuli. Secondly, we use eye positions recorded while viewing 15 conversational videos, and infer a stimulus-related characteristic: the presence or absence of original soundtrack. We achieve an average 81.2% correct classification rate (chance = 50%). HMMs allow to integrate bottom-up, top-down, and oculomotor influences into a single model of gaze behavior. This synergistic approach between behavior and machine learning will open new avenues for simple quantification of gazing behavior. We release SMAC with HMM, a Matlab toolbox freely available to the community under an open-source license agreement.published_or_final_versio

    Eye-tracking-aided digital system for strabismus diagnosis

    No full text
    Strabismus is one of the most common vision disorders in preschool children. It can cause amblyopia and even permanent vision loss. In addition to a vision problem, strabismus brings to both children and adults serious negative impacts in their daily life, education, employment etc. Timely diagnosis of strabismus is thus crucial. However, traditional diagnosis methods conducted by ophthalmologists rely significantly on their experiences, making the diagnosis results subjective. It is also inconvenient for those methods being used for strabismus examination in large communities such as schools. In light of that, in this Letter, the authors develop an objective, digital and automatic system based on eye-tracking technique for diagnosing strabismus. The system exploits eye-tracking technique to acquire a person's eye gaze data while he or she is looking at some targets. A group of features are proposed to characterise the gaze data. The person's strabismus condition can be diagnosed according to the features. A strabismus gaze dataset is built using the system. Experimental results on the dataset demonstrate the effectiveness of the proposed system for strabismus diagnosis

    Eyeā€trackingā€aided digital system for strabismus diagnosis

    No full text

    Eye-Tracking Aided Digital System for Strabismus Diagnosis

    No full text
    corecore