153 research outputs found

    Identifying Semantic Divergences Across Languages

    Get PDF
    Cross-lingual resources such as parallel corpora and bilingual dictionaries are cornerstones of multilingual natural language processing (NLP). They have been used to study the nature of translation, train automatic machine translation systems, as well as to transfer models across languages for an array of NLP tasks. However, the majority of work in cross-lingual and multilingual NLP assumes that translations recorded in these resources are semantically equivalent. This is often not the case---words and sentences that are considered to be translations of each other frequently divergein meaning, often in systematic ways. In this thesis, we focus on such mismatches in meaning in text that we expect to be aligned across languages. We term such mismatches as cross-lingual semantic divergences. The core claim of this thesis is that translation is not always meaning preserving which leads to cross-lingual semantic divergences that affect multilingual NLP tasks. Detecting such divergences requires ways of directly characterizing differences in meaning across languages through novel cross-lingual tasks, as well as models that account for translation ambiguity and do not rely on expensive, task-specific supervision. We support this claim through three main contributions. First, we show that a large fraction of data in multilingual resources (such as parallel corpora and bilingual dictionaries) is identified as semantically divergent by human annotators. Second, we introduce cross-lingual tasks that characterize differences in word meaning across languages by identifying the semantic relation between two words. We also develop methods to predict such semantic relations, as well as a model to predict whether sentences in different languages have the same meaning. Finally, we demonstrate the impact of divergences by applying the methods developed in the previous sections to two downstream tasks. We first show that our model for identifying semantic relations between words helps in separating equivalent word translations from divergent translations in the context of bilingual dictionary induction, even when the two words are close in meaning. We also show that identifying and filtering semantic divergences in parallel data helps in training a neural machine translation system twice as fast without sacrificing quality

    Exploiting Cross-Lingual Representations For Natural Language Processing

    Get PDF
    Traditional approaches to supervised learning require a generous amount of labeled data for good generalization. While such annotation-heavy approaches have proven useful for some Natural Language Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also not a viable solution, because developing a good machine translation system requires expensive to annotate resources which are not available for most languages. In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to languages beyond English without resorting to generous amounts of annotated data or expensive machine translation. These representations can be learned in an inexpensive manner, often from signals completely unrelated to the task of interest. I begin with a review of different ways of inducing such representations using a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a trained model across languages for document classification, assist in monolingual lexical semantics like word sense induction, identify asymmetric lexical relationships like hypernymy between words in different languages, or combining supervision across languages through a shared feature space for cross-lingual entity linking. In all these applications, the representations make information expressed in other languages available in English, while requiring minimal additional supervision in the language of interest

    Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation

    Full text link
    Existing approaches to automatic VerbNet-style verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word embeddings can be applied to this challenging syntactic-semantic task. Our method uses cross-lingual translation pairs to tie each of the six target languages into a bilingual vector space with English, jointly specialising the representations to encode the relational information from English VerbNet. A standard clustering algorithm is then run on top of the VerbNet-specialised representations, using vector dimensions as features for learning verb classes. Our results show that the proposed cross-lingual transfer approach sets new state-of-the-art verb classification performance across all six target languages explored in this work.Comment: EMNLP 2017 (long paper

    Information extraction of cybersecurity concepts: An LSTM approach

    Get PDF
    Extracting cybersecurity entities and the relationships between them from online textual resources such as articles, bulletins, and blogs and converting these resources into more structured and formal representations has important applications in cybersecurity research and is valuable for professional practitioners. Previous works to accomplish this task were mainly based on utilizing feature-based models. Feature-based models are time-consuming and need labor-intensive feature engineering to describe the properties of entities, domain knowledge, entity context, and linguistic characteristics. Therefore, to alleviate the need for feature engineering, we propose the usage of neural network models, specifically the long short-term memory (LSTM) models to accomplish the tasks of Named Entity Recognition (NER) and Relation Extraction (RE).We evaluated the proposed models on two tasks. The first task is performing NER and evaluating the results against the state-of-the-art Conditional Random Fields (CRFs) method. The second task is performing RE using three LSTM models and comparing their results to assess which model is more suitable for the domain of cybersecurity. The proposed models achieved competitive performance with less feature-engineering work. We demonstrate that exploiting neural network models in cybersecurity text mining is effective and practical. - 2019 by the authors.This publication was made possible by the support of Qatar University and DISP laboratory (Lumi?re University Lyon 2, France).Scopu

    Investigations into the value of labeled and unlabeled data in biomedical entity recognition and word sense disambiguation

    Get PDF
    Human annotations, especially in highly technical domains, are expensive and time consuming togather, and can also be erroneous. As a result, we never have sufficiently accurate data to train andevaluate supervised methods. In this thesis, we address this problem by taking a semi-supervised approach to biomedical namedentity recognition (NER), and by proposing an inventory-independent evaluation framework for supervised and unsupervised word sense disambiguation. Our contributions are as follows: We introduce a novel graph-based semi-supervised approach to named entity recognition(NER) and exploit pre-trained contextualized word embeddings in several biomedical NER tasks. We propose a new evaluation framework for word sense disambiguation that permits a fair comparison between supervised methods trained on different sense inventories as well as unsupervised methods without a fixed sense inventory

    Sentiment polarity shifters : creating lexical resources through manual annotation and bootstrapped machine learning

    Get PDF
    Alleviating pain is good and abandoning hope is bad. We instinctively understand how words like "alleviate" and "abandon" affect the polarity of a phrase, inverting or weakening it. When these words are content words, such as verbs, nouns and adjectives, we refer to them as polarity shifters. Shifters are a frequent occurrence in human language and an important part of successfully modeling negation in sentiment analysis; yet research on negation modeling has focussed almost exclusively on a small handful of closed class negation words, such as "not", "no" and "without. A major reason for this is that shifters are far more lexically diverse than negation words, but no resources exist to help identify them. We seek to remedy this lack of shifter resources. Our most central step towards this is the creation of a large lexicon of polarity shifters that covers verbs, nouns and adjectives. To reduce the prohibitive cost of such a large annotation task, we develop a bootstrapping approach that combines automatic classification with human verification. This ensures the high quality of our lexicon while reducing annotation cost by over 70%. In designing the bootstrap classifier we develop a variety of features which use both existing semantic resources and linguistically informed text patterns. In addition we investigate how knowledge about polarity shifters might be shared across different parts of speech, highlighting both the potential and limitations of such an approach. The applicability of our bootstrapping approach extends beyond the creation of a single resource. We show how it can further be used to introduce polarity shifter resources for other languages. Through the example case of German we show that all our features are transferable to other languages. Keeping in mind the requirements of under-resourced languages, we also explore how well a classifier would do when relying only on data- but not resource-driven features. We also introduce ways to use cross-lingual information, leveraging the shifter resources we previously created for other languages. Apart from the general question of which words can be polarity shifters, we also explore a number of other factors. One of these is the matter of shifting directions, which indicates whether a shifter affects positive polarities, negative polarities or whether it can shift in either direction. Using a supervised classifier we add shifting direction information to our bootstrapped lexicon. For other aspects of polarity shifting, manual annotation is preferable to automatic classification. Not every word that can cause polarity shifting does so for every of its word senses. As word sense disambiguation technology is not robust enough to allow the automatic handling of such nuances, we manually create a complete sense-level annotation of verbal polarity shifters. To verify the usefulness of the lexica which we create, we provide an extrinsic evaluation in which we apply them to a sentiment analysis task. In this task the different lexica are not only compared amongst each other, but also against a state-of-the-art compositional polarity neural network classifier that has been shown to be able to implicitly learn the negating effect of negation words from a training corpus. However, we find that the same is not true for the far more lexically diverse polarity shifters. Instead, the use of the explicit knowledge provided by our shifter lexica brings clear gains in performance.Deutsche Forschungsgesellschaf
    corecore