465 research outputs found

    DCU 250 Arabic dependency bank: an LFG gold standard resource for the Arabic Penn treebank

    Get PDF
    This paper describes the construction of a dependency bank gold standard for Arabic, DCU 250 Arabic Dependency Bank (DCU 250), based on the Arabic Penn Treebank Corpus (ATB) (Bies and Maamouri, 2003; Maamouri and Bies, 2004) within the theoretical framework of Lexical Functional Grammar (LFG). For parsing and automatically extracting grammatical and lexical resources from treebanks, it is necessary to evaluate against established gold standard resources. Gold standards for various languages have been developed, but to our knowledge, such a resource has not yet been constructed for Arabic. The construction of the DCU 250 marks the first step towards the creation of an automatic LFG f-structure annotation algorithm for the ATB, and for the extraction of Arabic grammatical and lexical resources

    A Sub-Character Architecture for Korean Language Processing

    Full text link
    We introduce a novel sub-character architecture that exploits a unique compositional structure of the Korean language. Our method decomposes each character into a small set of primitive phonetic units called jamo letters from which character- and word-level representations are induced. The jamo letters divulge syntactic and semantic information that is difficult to access with conventional character-level units. They greatly alleviate the data sparsity problem, reducing the observation space to 1.6% of the original while increasing accuracy in our experiments. We apply our architecture to dependency parsing and achieve dramatic improvement over strong lexical baselines.Comment: EMNLP 201

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    How to compare treebanks

    Get PDF
    Recent years have seen an increasing interest in developing standards for linguistic annotation, with a focus on the interoperability of the resources. This effort, however, requires a profound knowledge of the advantages and disadvantages of linguistic annotation schemes in order to avoid importing the flaws and weaknesses of existing encoding schemes into the new standards. This paper addresses the question how to compare syntactically annotated corpora and gain insights into the usefulness of specific design decisions. We present an exhaustive evaluation of two German treebanks with crucially different encoding schemes. We evaluate three different parsers trained on the two treebanks and compare results using EVALB, the Leaf-Ancestor metric, and a dependency-based evaluation. Furthermore, we present TePaCoC, a new testsuite for the evaluation of parsers on complex German grammatical constructions. The testsuite provides a well thought-out error classification, which enables us to compare parser output for parsers trained on treebanks with different encoding schemes and provides interesting insights into the impact of treebank annotation schemes on specific constructions like PP attachment or non-constituent coordination

    An Integrated Framework for Treebanks and Multilayer Annotations

    Full text link
    Treebank formats and associated software tools are proliferating rapidly, with little consideration for interoperability. We survey a wide variety of treebank structures and operations, and show how they can be mapped onto the annotation graph model, and leading to an integrated framework encompassing tree and non-tree annotations alike. This development opens up new possibilities for managing and exploiting multilayer annotations.Comment: 8 page
    corecore