6 research outputs found

    Machine Common Sense Concept Paper

    Full text link
    This paper summarizes some of the technical background, research ideas, and possible development strategies for achieving machine common sense. Machine common sense has long been a critical-but-missing component of Artificial Intelligence (AI). Recent advances in machine learning have resulted in new AI capabilities, but in all of these applications, machine reasoning is narrow and highly specialized. Developers must carefully train or program systems for every situation. General commonsense reasoning remains elusive. The absence of common sense prevents intelligent systems from understanding their world, behaving reasonably in unforeseen situations, communicating naturally with people, and learning from new experiences. Its absence is perhaps the most significant barrier between the narrowly focused AI applications we have today and the more general, human-like AI systems we would like to build in the future. Machine common sense remains a broad, potentially unbounded problem in AI. There are a wide range of strategies that could be employed to make progress on this difficult challenge. This paper discusses two diverse strategies for focusing development on two different machine commonsense services: (1) a service that learns from experience, like a child, to construct computational models that mimic the core domains of child cognition for objects (intuitive physics), agents (intentional actors), and places (spatial navigation); and (2) service that learns from reading the Web, like a research librarian, to construct a commonsense knowledge repository capable of answering natural language and image-based questions about commonsense phenomena

    Temporal Common Sense Acquisition with Minimal Supervision

    Full text link
    Temporal common sense (e.g., duration and frequency of events) is crucial for understanding natural language. However, its acquisition is challenging, partly because such information is often not expressed explicitly in text, and human annotation on such concepts is costly. This work proposes a novel sequence modeling approach that exploits explicit and implicit mentions of temporal common sense, extracted from a large corpus, to build TACOLM, a temporal common sense language model. Our method is shown to give quality predictions of various dimensions of temporal common sense (on UDST and a newly collected dataset from RealNews). It also produces representations of events for relevant tasks such as duration comparison, parent-child relations, event coreference and temporal QA (on TimeBank, HiEVE and MCTACO) that are better than using the standard BERT. Thus, it will be an important component of temporal NLP.Comment: Accepted by ACL 202

    "Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding

    Full text link
    Understanding time is crucial for understanding events expressed in natural language. Because people rarely say the obvious, it is often necessary to have commonsense knowledge about various temporal aspects of events, such as duration, frequency, and temporal order. However, this important problem has so far received limited attention. This paper systematically studies this temporal commonsense problem. Specifically, we define five classes of temporal commonsense, and use crowdsourcing to develop a new dataset, MCTACO, that serves as a test set for this task. We find that the best current methods used on MCTACO are still far behind human performance, by about 20%, and discuss several directions for improvement. We hope that the new dataset and our study here can foster more future research on this topic.Comment: EMNLP 2019 (short paper). arXiv admin note: text overlap with arXiv:1908.0492

    Do NLP Models Know Numbers? Probing Numeracy in Embeddings

    Full text link
    The ability to understand and work with numbers (numeracy) is critical for many complex reasoning tasks. Currently, most NLP models treat numbers in text in the same way as other tokens---they embed them as distributed vectors. Is this enough to capture numeracy? We begin by investigating the numerical reasoning capabilities of a state-of-the-art question answering model on the DROP dataset. We find this model excels on questions that require numerical reasoning, i.e., it already captures numeracy. To understand how this capability emerges, we probe token embedding methods (e.g., BERT, GloVe) on synthetic list maximum, number decoding, and addition tasks. A surprising degree of numeracy is naturally present in standard embeddings. For example, GloVe and word2vec accurately encode magnitude for numbers up to 1,000. Furthermore, character-level embeddings are even more precise---ELMo captures numeracy the best for all pre-trained methods---but BERT, which uses sub-word units, is less exact.Comment: EMNLP 201

    How Large Are Lions? Inducing Distributions over Quantitative Attributes

    Full text link
    Most current NLP systems have little knowledge about quantitative attributes of objects and events. We propose an unsupervised method for collecting quantitative information from large amounts of web data, and use it to create a new, very large resource consisting of distributions over physical quantities associated with objects, adjectives, and verbs which we call Distributions over Quantitative (DoQ). This contrasts with recent work in this area which has focused on making only relative comparisons such as "Is a lion bigger than a wolf?". Our evaluation shows that DoQ compares favorably with state of the art results on existing datasets for relative comparisons of nouns and adjectives, and on a new dataset we introduce

    Recent Advances in Natural Language Inference: A Survey of Benchmarks, Resources, and Approaches

    Full text link
    In the NLP community, recent years have seen a surge of research activities that address machines' ability to perform deep language understanding which goes beyond what is explicitly stated in text, rather relying on reasoning and knowledge of the world. Many benchmark tasks and datasets have been created to support the development and evaluation of such natural language inference ability. As these benchmarks become instrumental and a driving force for the NLP research community, this paper aims to provide an overview of recent benchmarks, relevant knowledge resources, and state-of-the-art learning and inference approaches in order to support a better understanding of this growing field
    corecore