315 research outputs found

    Do Language Embeddings Capture Scales?

    Full text link
    Pretrained Language Models (LMs) have been shown to possess significant linguistic, common sense, and factual knowledge. One form of knowledge that has not been studied yet in this context is information about the scalar magnitudes of objects. We show that pretrained language models capture a significant amount of this information but are short of the capability required for general common-sense reasoning. We identify contextual information in pre-training and numeracy as two key factors affecting their performance and show that a simple method of canonicalizing numbers can have a significant effect on the results.Comment: Accepted at EMNLP Findings 2020 and EMNLP BlackboxNLP workshop 2020; 8 pages, 2 figures; Minor changes to the acknowledgment sectio

    Knowledge and Reasoning for Image Understanding

    Get PDF
    abstract: Image Understanding is a long-established discipline in computer vision, which encompasses a body of advanced image processing techniques, that are used to locate (“where”), characterize and recognize (“what”) objects, regions, and their attributes in the image. However, the notion of “understanding” (and the goal of artificial intelligent machines) goes beyond factual recall of the recognized components and includes reasoning and thinking beyond what can be seen (or perceived). Understanding is often evaluated by asking questions of increasing difficulty. Thus, the expected functionalities of an intelligent Image Understanding system can be expressed in terms of the functionalities that are required to answer questions about an image. Answering questions about images require primarily three components: Image Understanding, question (natural language) understanding, and reasoning based on knowledge. Any question, asking beyond what can be directly seen, requires modeling of commonsense (or background/ontological/factual) knowledge and reasoning. Knowledge and reasoning have seen scarce use in image understanding applications. In this thesis, we demonstrate the utilities of incorporating background knowledge and using explicit reasoning in image understanding applications. We first present a comprehensive survey of the previous work that utilized background knowledge and reasoning in understanding images. This survey outlines the limited use of commonsense knowledge in high-level applications. We then present a set of vision and reasoning-based methods to solve several applications and show that these approaches benefit in terms of accuracy and interpretability from the explicit use of knowledge and reasoning. We propose novel knowledge representations of image, knowledge acquisition methods, and a new implementation of an efficient probabilistic logical reasoning engine that can utilize publicly available commonsense knowledge to solve applications such as visual question answering, image puzzles. Additionally, we identify the need for new datasets that explicitly require external commonsense knowledge to solve. We propose the new task of Image Riddles, which requires a combination of vision, and reasoning based on ontological knowledge; and we collect a sufficiently large dataset to serve as an ideal testbed for vision and reasoning research. Lastly, we propose end-to-end deep architectures that can combine vision, knowledge and reasoning modules together and achieve large performance boosts over state-of-the-art methods.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Supervised Adversarial Contrastive Learning for Emotion Recognition in Conversations

    Full text link
    Extracting generalized and robust representations is a major challenge in emotion recognition in conversations (ERC). To address this, we propose a supervised adversarial contrastive learning (SACL) framework for learning class-spread structured representations. The framework applies contrast-aware adversarial training to generate worst-case samples and uses a joint class-spread contrastive learning objective on both original and adversarial samples. It can effectively utilize label-level feature consistency and retain fine-grained intra-class features. To avoid the negative impact of adversarial perturbations on context-dependent data, we design a contextual adversarial training strategy to learn more diverse features from context and enhance the model's context robustness. We develop a sequence-based method SACL-LSTM under this framework, to learn label-consistent and context-robust emotional features for ERC. Experiments on three datasets demonstrate that SACL-LSTM achieves state-of-the-art performance on ERC. Extended experiments prove the effectiveness of the SACL framework.Comment: 16 pages, accepted by ACL 202
    • …
    corecore