4,531 research outputs found

    Deep Architectures for Visual Recognition and Description

    Get PDF
    In recent times, digital media contents are inherently of multimedia type, consisting of the form text, audio, image and video. Several of the outstanding computer Vision (CV) problems are being successfully solved with the help of modern Machine Learning (ML) techniques. Plenty of research work has already been carried out in the field of Automatic Image Annotation (AIA), Image Captioning and Video Tagging. Video Captioning, i.e., automatic description generation from digital video, however, is a different and complex problem altogether. This study compares various existing video captioning approaches available today and attempts their classification and analysis based on different parameters, viz., type of captioning methods (generation/retrieval), type of learning models employed, the desired output description length generated, etc. This dissertation also attempts to critically analyze the existing benchmark datasets used in various video captioning models and the evaluation metrics for assessing the final quality of the resultant video descriptions generated. A detailed study of important existing models, highlighting their comparative advantages as well as disadvantages are also included. In this study a novel approach for video captioning on the Microsoft Video Description (MSVD) dataset and Microsoft Video-to-Text (MSR-VTT) dataset is proposed using supervised learning techniques to train a deep combinational framework, for achieving better quality video captioning via predicting semantic tags. We develop simple shallow CNN (2D and 3D) as feature extractors, Deep Neural Networks (DNNs and Bidirectional LSTMs (BiLSTMs) as tag prediction models and Recurrent Neural Networks (RNNs) (LSTM) model as the language model. The aim of the work was to provide an alternative narrative to generating captions from videos via semantic tag predictions and deploy simpler shallower deep model architectures with lower memory requirements as solution so that it is not very memory extensive and the developed models prove to be stable and viable options when the scale of the data is increased. This study also successfully employed deep architectures like the Convolutional Neural Network (CNN) for speeding up automation process of hand gesture recognition and classification of the sign languages of the Indian classical dance form, ‘Bharatnatyam’. This hand gesture classification is primarily aimed at 1) building a novel dataset of 2D single hand gestures belonging to 27 classes that were collected from (i) Google search engine (Google images), (ii) YouTube videos (dynamic and with background considered) and (iii) professional artists under staged environment constraints (plain backgrounds). 2) exploring the effectiveness of CNNs for identifying and classifying the single hand gestures by optimizing the hyperparameters, and 3) evaluating the impacts of transfer learning and double transfer learning, which is a novel concept explored for achieving higher classification accuracy

    An Outlook into the Future of Egocentric Vision

    Full text link
    What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.Comment: We invite comments, suggestions and corrections here: https://openreview.net/forum?id=V3974SUk1

    Video Abstracting at a Semantical Level

    Get PDF
    One the most common form of a video abstract is the movie trailer. Contemporary movie trailers share a common structure across genres which allows for an automatic generation and also reflects the corresponding moviea s composition. In this thesis a system for the automatic generation of trailers is presented. In addition to action trailers, the system is able to deal with further genres such as Horror and comedy trailers, which were first manually analyzed in order to identify their basic structures. To simplify the modeling of trailers and the abstract generation itself a new video abstracting application was developed. This application is capable of performing all steps of the abstract generation automatically and allows for previews and manual optimizations. Based on this system, new abstracting models for horror and comedy trailers were created and the corresponding trailers have been automatically generated using the new abstracting models. In an evaluation the automatic trailers were compared to the original Trailers and showed a similar structure. However, the automatically generated trailers still do not exhibit the full perfection of the Hollywood originals as they lack intentional storylines across shots

    "You Tube and I Find" - personalizing multimedia content access

    Full text link
    Recent growth in broadband access and proliferation of small personal devices that capture images and videos has led to explosive growth of multimedia content available everywhereVfrom personal disks to the Web. While digital media capture and upload has become nearly universal with newer device technology, there is still a need for better tools and technologies to search large collections of multimedia data and to find and deliver the right content to a user according to her current needs and preferences. A renewed focus on the subjective dimension in the multimedia lifecycle, fromcreation, distribution, to delivery and consumption, is required to address this need beyond what is feasible today. Integration of the subjective aspects of the media itselfVits affective, perceptual, and physiological potential (both intended and achieved), together with those of the users themselves will allow for personalizing the content access, beyond today’s facility. This integration, transforming the traditional multimedia information retrieval (MIR) indexes to more effectively answer specific user needs, will allow a richer degree of personalization predicated on user intention and mode of interaction, relationship to the producer, content of the media, and their history and lifestyle. In this paper, we identify the challenges in achieving this integration, current approaches to interpreting content creation processes, to user modelling and profiling, and to personalized content selection, and we detail future directions. The structure of the paper is as follows: In Section I, we introduce the problem and present some definitions. In Section II, we present a review of the aspects of personalized content and current approaches for the same. Section III discusses the problem of obtaining metadata that is required for personalized media creation and present eMediate as a case study of an integrated media capture environment. Section IV presents the MAGIC system as a case study of capturing effective descriptive data and putting users first in distributed learning delivery. The aspects of modelling the user are presented as a case study in using user’s personality as a way to personalize summaries in Section V. Finally, Section VI concludes the paper with a discussion on the emerging challenges and the open problems

    Automatic indexing of video content via the detection of semantic events

    Get PDF
    The number, and size, of digital video databases is continuously growing. Unfortunately, most, if not all, of the video content in these databases is stored without any sort of indexing or analysis and without any associated metadata. If any of the videos do have metadata, then it is usually the result of some manual annotation process rather than any automatic indexing. Thus, locating clips and browsing content is difficult, time consuming and generally inefficient. The task of automatically indexing movies is particularly difficult given their innovative creation process and the individual style of many film makers. However, there are a number of underlying film grammar conventions that are universally followed, from a Hollywood blockbuster to an underground movie with a limited budget. These conventions dictate many elements of film making such as camera placement and editing. By examining the use of these conventions it is possible to extract information about the events in a movie. This research aims to provide an approach that creates an indexed version of a movie to facilitate ease of browsing and efficient retrieval. In order to achieve this aim, all of the relevant events contained within a movie are detected and classified into a predefined index. The event detection process involves examining the underlying structure of a movie and utilising audiovisual analysis techniques, supported by machine learning algorithms, to extract information based on this structure. The result is an indexed movie that can be presented to users for browsing/retrieval of relevant events, as well as supporting user specified searching. Extensive evaluation of the indexing approach is carried out. This evaluation indicates efficient performance of the event detection and retrieval system, and also highlights the subjective nature of video content
    corecore