72,185 research outputs found

    Multiverse Predictions for Habitability: Fraction of Life that Develops Intelligence

    Full text link
    Do mass extinctions affect the development of intelligence? If so, we may expect to be in a universe that is exceptionally placid. We consider the effects of impacts, supervolcanoes, global glaciations, and nearby gamma ray bursts, and how their rates depend on fundamental constants. It is interesting that despite the very disparate nature of these processes, each occurs on timescales of 100 Myr-Gyr. We argue that this is due to a selection effect that favors both tranquil locales within our universe, as well as tranquil universes. Taking gamma ray bursts to be the sole driver of mass extinctions is disfavored in multiverse scenarios, as the rate is much lower for different values of the fundamental constants. In contrast, geological causes of extinction are very compatible with the multiverse. Various frameworks for the effects of extinctions are investigated, and the intermediate disturbance hypothesis is found to be most compatible with the multiverse.Comment: 30 pages, 6 figures, v2: volcanoes section fixed, matches published versio

    Detecting patterns of species diversification in the presence of both rate shifts and mass extinctions

    Get PDF
    Recent methodological advances are enabling better examination of speciation and extinction processes and patterns. A major open question is the origin of large discrepancies in species number between groups of the same age. Existing frameworks to model this diversity either focus on changes between lineages, neglecting global effects such as mass extinctions, or focus on changes over time which would affect all lineages. Yet it seems probable that both lineages differences and mass extinctions affect the same groups. Here we used simulations to test the performance of two widely used methods, under complex scenarios. We report good performances, although with a tendency to over-predict events when increasing the complexity of the scenario. Overall, we find that lineage shifts are better detected than mass extinctions. This work has significance for assessing the methods currently used for estimating changes in diversification using phylogenies and developing new tests.Comment: 34 pages, 11 figure

    The impact of mass extinctions

    Get PDF
    In the years since Snowbird an explosive growth of research on the patterns, causes, and consequences of extinction was seen. The fossil record of extinction is better known, stratigraphic sections were scrutinized in great detail, and additional markers of environmental change were discovered in the rock record. However flawed, the fossil record is the only record that exists of natural extinction. Compilations from the primary literature contain a faint periodic signal: the extinctions of the past 250 my may be regulary spaced. The reality of the periodicity remains a subject for debate. The implications of periodicity are so profound that the debate is sure to continue. The greater precision from stratigraphic sections spanning extinction events has yet to resolve controversies concerning the rates at which extinctions occurred. Some sections seem to record sudden terminations, while others suggest gradual or steplike environmental deterioration. Unfortunately, the manner in which the strata record extinctions and compile stratigraphic ranges makes a strictly literal reading of the fossil record inadvisable. Much progress was made in the study of mass extinctions. The issues are more sharply defined but they are not fully resolved. Scenarios should look back to the phenomena they purport to explain - not just an iridium-rich layer, but the complex fabric of a mass extinction

    Signals of Supersymmetric Dark Matter

    Get PDF
    The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat would lead to large-scale volcanism which could in turn have caused mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe. Binary character of these extinctions is another unique aspect of this signature of dark matter. In addition dark matter annihilations appear to be a new source of heat in the planetary systems.Comment: Latex file, 11 pages, no figure

    Volcanogenic Dark Matter and Mass Extinctions

    Full text link
    The passage of the Earth through dense clumps of dark matter, the presence of which are predicted by certain cosmologies, would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat can cause large-scale volcanism which could in turn have caused the extinction of the dinosaurs and other mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe.Comment: 6 pages in Latex fil

    Review of The Future of Life, by Edward O. Wilson

    Get PDF
    [Excerpt] It is refreshing to read an environmental diatribe where the writer has both the authority of a world expert and a willingness to compromise to pursue realistic solutions. Wilson is a Harvard biology professor, two-time Pulitzer Prize winner, and a director of the Nature Conservancy. In The Future of Life, he presents a succinct evaluation of the great ecological issues of our day, focusing on the rapid pace of species extinctions, and on the promise of finding a balance between conservation and human activity that will bring the extinctions to a halt

    Rescuing ecosystems from extinction cascades through compensatory perturbations

    Full text link
    Food-web perturbations stemming from climate change, overexploitation, invasive species, and habitat degradation often cause an initial loss of species that results in a cascade of secondary extinctions, posing considerable challenges to ecosystem conservation efforts. Here we devise a systematic network-based approach to reduce the number of secondary extinctions using a predictive modeling framework. We show that the extinction of one species can often be compensated by the concurrent removal or population suppression of other specific species, which is a counterintuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not evident from local predator-prey relationships. In numerous cases, even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. These compensatory perturbations only exploit resources available in the system, and illustrate the potential of human intervention combined with predictive modeling for ecosystem management.Comment: The supplementary information file can be downloaded from here: http://dyn.phys.northwestern.edu/ncomms1163-s1.pdf. The published version of the article is also available here: http://dyn.phys.northwestern.edu/ncomms1163.pd

    Infrared Photometry of Starless Dense Cores

    Full text link
    Deep JHKs photometry was obtained towards eight dense molecular cores and J-H vs. H-Ks color-color plots are presented. Our photometry, sensitive to the detection of a 1 solar mass, 1 X 10^6 year old star through approx. 35 - 50 magnitudes of visual extinction, shows no indication of the presence of star/disk systems based on J-H vs. H-Ks colors of detected objects. The stars detected towards the cores are generally spatially anti-correlated with core centers suggesting a background origin, although we cannot preclude the possibility that some stars detected at H and Ks alone, or Ks alone, are not low mass stars or brown dwarfs (< 0.3 Solar Masses) behind substantial amounts of visual extinction (e.g. 53 magnitudes for L183B). Lower limits to optical extinctions are estimated for the detected background stars, with high extinctions being encountered, in the extreme case ranging up to at least Av = 46, and probably higher. The extinction data are used to estimate cloud masses and densities which are comparable to those determined from molecular line studies. Variations in cloud extinctions are consistent with a systematic nature to cloud density distributions and column density variations and extinctions are found to be consistent with submillimeter wave continuum studies of similar regions. The results suggest that some cores have achieved significant column density contrasts (approx. 30) on sub-core scales (approx. 0.05 pc) without having formed known stars.Comment: 44 pages including tables and figures, accepted ApJ, March 24, 200

    Extinctions at 7um and 15um from the ISOGAL survey

    Full text link
    The extinction laws at 7um and 15um are derived for more than 120 sightlines in the inner Galactic plane based on the ISOGAL survey data and the near-infrared data from DENIS and 2MASS. The tracers are the ISOGAL point sources with [7]-[15]<0.4 which are RGB tip stars or early AGB stars with moderate mass loss. They have well-defined intrinsic color indices (J-Ks)_0, (Ks-[7])_0 and (Ks-[15])_0. By a linear fitting of the observed color indices Ks-[7] and Ks-[15] to the observed J-Ks, we obtain the ratio between the E(Ks-[7]) and E(Ks-[15]) color excesses and E(J-Ks). We infer the selective extinctions at 7 and 15um in terms of the near-infrared extinction in the Ks band. The distribution of the derived extinctions around 7 micron (A_7) is well represented by a Gaussian function, with the peak at about 0.47A_Ks and ranging from 0.33 to 0.55A_Ks (using the near-infrared extinctions of Rieke & Lebovsky 1985). There is some evidence that A_7/A_Ks may vary significantly depending on the line of sight. The derived selective extinction at 15um suffers uncertainty mainly from the dispersion in the intrinsic color index (Ks-[15])_0 which is affected by dust emission from mass-losing AGB stars. The peak value of A_15 is around 0.40A_Ks.Comment: 21 pages, 6 figures, accepted for publication in Astronomy and Astrophysic
    corecore