236,302 research outputs found
Survival of small populations under demographic stochasticity
We estimate the mean time to extinction of small populations in an environment with constant carrying capacity but under stochastic demography. In particular, we investigate the interaction of stochastic variation in fecundity and sex ratio under several different schemes of density dependent population growth regimes. The methods used include Markov chain theory, Monte Carlo simulations, and numerical simulations based on Markov chain theory. We find a strongly enhanced extinction risk if stochasticity in sex ratio and fluctuating population size act simultaneously as compared to the case where each mechanism acts alone. The distribution of extinction times deviates slightly from a geometric one, in particular for short extinction times. We also find that whether maximization of intrinsic growth rate decreases the risk of extinction or not depends strongly on the population regulation mechanism. If the population growth regime reduces populations above the carrying capacity to a size below the carrying capacity for large r (overshooting) then the extinction risk increases if the growth rate deviates from an optimal r-value
Hurst Coefficient in long time series of population size: Model for two plant populations with different reproductive strategies
Can the fractal dimension of fluctuations in population size be used to estimate extinction risk? The problem with estimating this fractal dimension is that the lengths of the time series are usually too short for conclusive results. This study answered this question with long time series data obtained from an iterative competition model. This model produces competitive extinction at different perturbation intensities for two different germination strategies: germination of all seeds vs. dormancy in half the seeds. This provided long time series of 900 years and different extinction risks. The results support the hypothesis for the effectiveness of the Hurst coefficient for estimating extinction risk
Digging the pupfish out of its hole: risk analyses to guide harvest of Devils Hole pupfish for captive breeding.
The Devils Hole pupfish is restricted to one wild population in a single aquifer-fed thermal pool in the Desert National Wildlife Refuge Complex. Since 1995 the pupfish has been in a nearly steady decline, where it was perched on the brink of extinction at 35-68 fish in 2013. A major strategy for conserving the pupfish has been the establishment of additional captive or refuge populations, but all ended in failure. In 2013 a new captive propagation facility designed specifically to breed pupfish was opened. I examine how a captive population can be initiated by removing fish from the wild without unduly accelerating extinction risk for the pupfish in Devils Hole. I construct a count-based PVA model, parameterized from estimates of the intrinsic rate of increase and its variance using counts in spring and fall from 1995-2013, to produce the first risk assessment for the pupfish. Median time to extinction was 26 and 27 years from spring and fall counts, respectively, and the probability of extinction in 20 years was 26-33%. Removing individuals in the fall had less risk to the wild population than harvest in spring. For both spring and fall harvest, risk increased rapidly when levels exceeded six adult pupfish per year for three years. Extinction risk was unaffected by the apportionment of total harvest among years. A demographic model was used to examine how removal of different stage classes affects the dynamics of the wild population based on reproductive value (RV) and elasticity. Removing eggs had the least impact on the pupfish in Devils Hole; RV of an adult was roughly 25 times that of an egg. To evaluate when it might be prudent to remove all pupfish from Devils Hole for captive breeding, I used the count-based model to examine how extinction risk related to pupfish population size. Risk accelerated when initial populations were less than 30 individuals. Results are discussed in relation to the challenges facing pupfish recovery compared to management of other highly endangered species
Predators reduce extinction risk in noisy metapopulations
Background
Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches.
Findings
By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model.
Conclusions
Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level
Superintelligence as a Cause or Cure for Risks of Astronomical Suffering
Discussions about the possible consequences of creating superintelligence have included the possibility of existential risk, often understood mainly as the risk of human extinction. We argue that suffering risks (s-risks) , where an adverse outcome would bring about severe suffering on an astronomical scale, are risks of a comparable severity and probability as risks of extinction. Preventing them is the common interest of many different value systems. Furthermore, we argue that in the same way as superintelligent AI both contributes to existential risk but can also help prevent it, superintelligent AI can both be a suffering risk or help avoid it. Some types of work aimed at making superintelligent AI safe will also help prevent suffering risks, and there may also be a class of safeguards for AI that helps specifically against s-risks
The threatened status of restricted-range coral reef fish species
Coral reefs are the most diverse ecosystem in the sea. Throughout the world they are being overfished, polluted and destroyed, placing biodiversity at risk. To date, much of the concern over biodiversity loss has centred on local losses and the possibility of global extinction has largely been discounted. However, recent research has shown that 24% of reef fish species have restricted ranges (< 800 000 km(2)), with 9% highly restricted (< 50 000 km(2)). Restricted-range species are thought to face a greater risk of extinction than more widespread species since local impacts could cause global loss. We searched for information on status in the wild and characteristics of 397 restricted-range reef fish species. Fish body size, habitat requirements and usefulness to people were compared with those of a taxonomically-matched sample of more widespread species. We found that on average species with restricted ranges were significantly smaller (mean total length 19.1 cm versus 24.4 cm), tended to have narrower habitat requirements and were less used by people. Greater habitat specificity will tend to increase extinction risk while, if real, more limited usefulness (equivalent to exploitation) may reduce risk. Fifty-eight percent of restricted-range species were considered common/abundant in the wild and 42% uncommon/rare. Population status and threats to 319 species for which data were available were assessed according to the categories and criteria of the IUCN red list of threatened animals. A number of species were found to be rare, were exploited and had highly restricted ranges overlapping areas where reef degradation is particularly severe, placing them at a high risk of extinction. Five species were listed as Critically Endangered, two of them possibly already extinct in the wild, one as Endangered and 172 as Vulnerable. A further 126 species fell into Lower Risk categories and 11 were considered Data Deficient. Given the intensity of impacts to reefs, the broad geographical areas affected and the large numbers of restricted-range species, global extinctions seem likely. Urgent management action is now crucial for the survival of several species of reef fishes
Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species
Given increasing pressures upon biodiversity, identification of species’ traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species’ extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species), latitudinal range position (temperate and tropics species), migration strategy (migratory and resident species), diet (carnivorous, insectivorous, herbivorous and omnivorous species) and body mass. We related the extinction risk using IUCN threat level categories to species’ traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such perturbations act across different tropical environments. Therefore, disproportionally higher conservation effort in the tropics compared to the temperate zone is urgently needed
Extinction by Miscalculation:
Species at Risk Act, Sakinaw sockeye, Cultus sockeye, fisheries management, extinction.
Climate change and the selective signature of the Late Ordovician mass extinction
Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia
- …
