105,388 research outputs found

    Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms

    Get PDF
    Detection of high-redshift absorption in the optical spectra of quasars have provided a powerful tool to measure spatial and temporal variations of physical ``constants'' in the Universe. It is demonstrated that high sensitivity to the variation of the fine structure constant alpha can be obtained from a comparison of the spectra of heavy and light atoms (or molecules). We have performed calculations for the pair FeII and MgII for which accurate quasar and laboratory spectra are available. A possibility of 10510^5 times enhanced effects of the fundamental constants variation suitable for laboratory measurements is also discussed.Comment: 8 pages; LaTeX; Submitted to Phys. Rev. Let

    The double radiative annihilation of the heavy-light fermion bound states

    Get PDF
    We consider the double-radiative decays of heavy-light QED and QCD atoms, μ+eγγ\mu^+ e^- \to \gamma\gamma and Bˉs0γγ\bar{B}^{0}_s \to \gamma\gamma. Especially, we take under scrutiny contributions coming from operators that vanish on the free-quark mass shell. We show that by field redefinitions these operators are converted into contact terms attached to the bound state dynamics. A net off-shell contribution is suppressed with respect to the effect of the well known flavour-changing magnetic-moment operator by the bound-state binding factor. The negligible off-shellness of the weakly bound QED atoms becomes more relevant for strongly bound QCD atoms. We analyze this off-shellness in model-approaches to QCD, one of them enabling us to keep close contact to the related effect in QED. We also comment on the off-shell effect in the corresponding process BˉdKγ\bar{B}_d \to K^* \gamma, and discuss possible hindering of the claimed beyond-standard-model discovery in this decay mode.Comment: 24 pages, 5 figures; to be published in Fizika

    Material-barrier Tunneling in One-dimensional Few-boson Mixtures

    Full text link
    We study the quantum dynamics of strongly interacting few-boson mixtures in one-dimensional traps. If one species is strongly localized compared to the other (e.g., much heavier), it can serve as an effective potential barrier for that mobile component. Near the limit of infinite localization, we map this to a system of identical bosons in a double well. For realistic localization, the backaction of the light species on the "barrier" atoms is explained--to lowest order--in terms of an induced attraction between these. Even in equilibrium, this may outweigh the bare intra-species interaction, leading to unexpected correlated states. Remarkably, the backaction drastically affects the inter-species dynamics, such as the tunneling of an attractively bound pair of fermionized atoms.Comment: 10 pages, 3 figure

    Candidate molecular ions for an electron electric dipole moment experiment

    Get PDF
    This paper is a theoretical work in support of a newly proposed experiment (R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises greater sensitivity to measurements of the electron's electric dipole moment (EDM) based on the trapping of molecular ions. Such an experiment requires the choice of a suitable molecule that is both experimentally feasible and possesses an expectation of a reasonable EDM signal. We find that the molecular ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet Delta states. In particular, we anticipate that the effective electric fields generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and -18 GV/cm respectively. As a byproduct of this discussion, we also explain how to make estimates of the size of the effective electric field acting in a molecule, using commercially available, nonrelativistic molecular structure software.Comment: 25 pages, 3 figures, submitted to Physical Review

    Atom-dimer scattering and long-lived trimers in fermionic mixtures

    Full text link
    We consider a heteronuclear fermionic mixture on the molecular side of an interspecies Feshbach resonance and discuss atom-dimer scattering properties in uniform space and in the presence of an external confining potential, restricting the system to a quasi-2D geometry. We find that there is a peculiar atom-dimer p-wave resonance which can be tuned by changing the frequency of the confinement. Our results have implications for the ongoing experiments on Lithium-Potassium mixtures, where this mechanism allows for switching the p-wave interaction between a K atom and Li-K dimer from attractive to repulsive, and forming a weakly bound trimer with unit angular momentum. We show that such trimers are long-lived and the atom-dimer resonance does not enhance inelastic relaxation in the mixture, making it an outstanding candidate for studies of p-wave resonance effects in a many-body system.Comment: 4 pages, 2 figures, published versio
    corecore