1,694,216 research outputs found

    External Fields as Intrinsic Geometry

    Get PDF
    There is an interesting dichotomy between a space-time metric considered as external field in a flat background and the same considered as an intrinsic part of the geometry of space-time. We shall describe and compare two other external fields which can be absorbed into an appropriate redefinition of the geometry, this time a noncommutative one. We shall also recall some previous incidences of the same phenomena involving bosonic field theories. It is known that some such theories on the commutative geometry of space-time can be re-expressed as abelian-gauge theory in an appropriate noncommutative geometry. The noncommutative structure can be considered as containing extra modes all of whose dynamics are given by the one abelian action.Comment: 19 pages, Late

    Holographic fermions in external magnetic fields

    Get PDF
    We study the Fermi level structure of 2+1-dimensional strongly interacting electron systems in external magnetic field using the AdS/CFT correspondence. The gravity dual of a finite density fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordstrom black hole. In the probe limit the magnetic system can be reduced to the non-magnetic one, with Landau-quantized momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at the critical magnetic field triggers the non-Fermi liquid regime with unstable quasiparticles and a change in transport properties of the system. We associate it with a metal-"strange metal" phase transition. Next we compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators. For dual fermions with a large charge, many different Fermi surfaces contribute and the Hall conductivity is quantized as expected for integer Quantum Hall Effect (QHE). At strong magnetic fields, as additional Fermi surfaces open up, new plateaus typical for the fractional QHE appear. The somewhat irregular pattern in the length of fractional QHE plateaus resemble the outcomes of experiments on thin graphite in a strong magnetic field. Finally, motivated by the absence of the sign problem in holography, we suggest a lattice approach to the AdS calculations of finite density systems.Comment: 34 pages, 14 figure

    Composite black holes in external fields

    Full text link
    The properties of composite black holes in the background of electric or magnetic flux tubes are analyzed, both when the black holes remain in static equilibrium and when they accelerate under a net external force. To this effect, we present a number of exact solutions (generalizing the Melvin, C and Ernst solutions) describing these configurations in a theory that admits composite black holes with an arbitrary number of constituents. The compositeness property is argued to be independent of supersymmetry. Even if, in general, the shape of the horizon is distorted by the fields, the dependence of the extreme black hole area on the charges is shown to remain unchanged by either the external fields or the acceleration. We also discuss pair creation of composite black holes. In particular, we extend a previous analysis of pair creation of massless holes. Finally, we give the generalization of our solutions to include non-extreme black holes.Comment: 27 pages, LaTe

    Quantum radiation in external background fields

    Full text link
    A canonical formalism is presented which allows for investigations of quantum radiation induced by localized, smooth disturbances of classical background fields by means of a perturbation theory approach. For massless, non-selfinteracting quantum fields at zero temperature we demonstrate that the low-energy part of the spectrum of created particles exhibits a non-thermal character. Applied to QED in varying dielectrics the response theory approach facilitates to study two distinct processes contributing to the production of photons: the squeezing effect due to space-time varying properties of the medium and of the velocity effect due to its motion. The generalization of this approach to finite temperatures as well as the relation to sonoluminescence is indicated.Comment: 20 page

    Unconventional magnets in external magnetic fields

    Full text link
    This short review surveys phenomena observed when a magnetic field is applied to a system of localised spins on a lattice. Its focus is on frustrated magnets in dimension d2d \geq 2. The interplay of field and entropy is illustrated in the context of their unusual magnetocaloric properties, where field-tuned degeneracies assert themselves. Magnetisation plateaux can reveal the physics of fluctuations, with unusual excitations (such as local modes, extended string defects or monopoles) involved in plateau termination. Field-tuning lattice geometry is the final topic, where mechanisms for dimensional reduction and conversion between different lattice types are discussed.Comment: Plenary Talk at HFM 2008 Conferenc
    corecore