99,307 research outputs found

    Hartle-Hawking state is a maximum of entanglement entropy

    Get PDF
    It is shown that the Hartle-Hawking state of a scalar field is a maximum of entanglement entropy in the space of pure quantum states satisfying the condition that backreaction is finite. In other words, the Hartle-Hawking state is a curved-space analogue of the EPR state, which is also a maximum of entanglement entropy.Comment: Latex, 4 pages, Some comments are added on the "small backreaction condition

    The MaxEnt extension of a quantum Gibbs family, convex geometry and geodesics

    Full text link
    We discuss methods to analyze a quantum Gibbs family in the ultra-cold regime where the norm closure of the Gibbs family fails due to discontinuities of the maximum-entropy inference. The current discussion of maximum-entropy inference and irreducible correlation in the area of quantum phase transitions is a major motivation for this research. We extend a representation of the irreducible correlation from finite temperatures to absolute zero.Comment: 8 pages, 3 figures, 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 21-26 September 2014, Ch\^ateau du Clos Luc\'e, Amboise, Franc

    Maximum entropy properties of discrete-time first-order stable spline kernel

    Full text link
    The first order stable spline (SS-1) kernel is used extensively in regularized system identification. In particular, the stable spline estimator models the impulse response as a zero-mean Gaussian process whose covariance is given by the SS-1 kernel. In this paper, we discuss the maximum entropy properties of this prior. In particular, we formulate the exact maximum entropy problem solved by the SS-1 kernel without Gaussian and uniform sampling assumptions. Under general sampling schemes, we also explicitly derive the special structure underlying the SS-1 kernel (e.g. characterizing the tridiagonal nature of its inverse), also giving to it a maximum entropy covariance completion interpretation. Along the way similar maximum entropy properties of the Wiener kernel are also given

    Multi-Scale CLEAN deconvolution of radio synthesis images

    Full text link
    Radio synthesis imaging is dependent upon deconvolution algorithms to counteract the sparse sampling of the Fourier plane. These deconvolution algorithms find an estimate of the true sky brightness from the necessarily incomplete sampled visibility data. The most widely used radio synthesis deconvolution method is the CLEAN algorithm of Hogbom. This algorithm works extremely well for collections of point sources and surprisingly well for extended objects. However, the performance for extended objects can be improved by adopting a multi-scale approach. We describe and demonstrate a conceptually simple and algorithmically straightforward extension to CLEAN that models the sky brightness by the summation of components of emission having different size scales. While previous multiscale algorithms work sequentially on decreasing scale sizes, our algorithm works simultaneously on a range of specified scales. Applications to both real and simulated data sets are given.Comment: Submitted to IEEE Special Issue on Signal Processin

    Parameters estimation for spatio-temporal maximum entropy distributions: application to neural spike trains

    Get PDF
    We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [4] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neural networks.Comment: 34 pages, 33 figure

    Time and spectral domain relative entropy: A new approach to multivariate spectral estimation

    Full text link
    The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed}. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.Comment: 32 pages, submitted for publicatio
    corecore