3 research outputs found

    Error Forward-Propagation: Reusing Feedforward Connections to Propagate Errors in Deep Learning

    Full text link
    We introduce Error Forward-Propagation, a biologically plausible mechanism to propagate error feedback forward through the network. Architectural constraints on connectivity are virtually eliminated for error feedback in the brain; systematic backward connectivity is not used or needed to deliver error feedback. Feedback as a means of assigning credit to neurons earlier in the forward pathway for their contribution to the final output is thought to be used in learning in the brain. How the brain solves the credit assignment problem is unclear. In machine learning, error backpropagation is a highly successful mechanism for credit assignment in deep multilayered networks. Backpropagation requires symmetric reciprocal connectivity for every neuron. From a biological perspective, there is no evidence of such an architectural constraint, which makes backpropagation implausible for learning in the brain. This architectural constraint is reduced with the use of random feedback weights. Models using random feedback weights require backward connectivity patterns for every neuron, but avoid symmetric weights and reciprocal connections. In this paper, we practically remove this architectural constraint, requiring only a backward loop connection for effective error feedback. We propose reusing the forward connections to deliver the error feedback by feeding the outputs into the input receiving layer. This mechanism, Error Forward-Propagation, is a plausible basis for how error feedback occurs deep in the brain independent of and yet in support of the functionality underlying intricate network architectures. We show experimentally that recurrent neural networks with two and three hidden layers can be trained using Error Forward-Propagation on the MNIST and Fashion MNIST datasets, achieving 1.90%1.90\% and 11%11\% generalization errors respectively

    Activation Relaxation: A Local Dynamical Approximation to Backpropagation in the Brain

    Full text link
    The backpropagation of error algorithm (backprop) has been instrumental in the recent success of deep learning. However, a key question remains as to whether backprop can be formulated in a manner suitable for implementation in neural circuitry. The primary challenge is to ensure that any candidate formulation uses only local information, rather than relying on global signals as in standard backprop. Recently several algorithms for approximating backprop using only local signals have been proposed. However, these algorithms typically impose other requirements which challenge biological plausibility: for example, requiring complex and precise connectivity schemes, or multiple sequential backwards phases with information being stored across phases. Here, we propose a novel algorithm, Activation Relaxation (AR), which is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system. Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, utilises only a single parallel backwards relaxation phase, and can operate on arbitrary computation graphs. We illustrate these properties by training deep neural networks on visual classification tasks, and describe simplifications to the algorithm which remove further obstacles to neurobiological implementation (for example, the weight-transport problem, and the use of nonlinear derivatives), while preserving performance.Comment: initial upload; revised version (updated abstract, related work) 28-09-20; 05/10/20: revised for ICLR submissio

    Cognitive Action Laws: The Case of Visual Features

    Full text link
    This paper proposes a theory for understanding perceptual learning processes within the general framework of laws of nature. Neural networks are regarded as systems whose connections are Lagrangian variables, namely functions depending on time. They are used to minimize the cognitive action, an appropriate functional index that measures the agent interactions with the environment. The cognitive action contains a potential and a kinetic term that nicely resemble the classic formulation of regularization in machine learning. A special choice of the functional index, which leads to forth-order differential equations---Cognitive Action Laws (CAL)---exhibits a structure that mirrors classic formulation of machine learning. In particular, unlike the action of mechanics, the stationarity condition corresponds with the global minimum. Moreover, it is proven that typical asymptotic learning conditions on the weights can coexist with the initialization provided that the system dynamics is driven under a policy referred to as information overloading control. Finally, the theory is experimented for the problem of feature extraction in computer vision
    corecore