3,611 research outputs found

    TuLiPA : towards a multi-formalism parsing environment for grammar engineering

    Get PDF
    In this paper, we present an open-source parsing environment (TĂźbingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars (TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German

    TuLiPA : towards a multi-formalism parsing environment for grammar engineering

    Get PDF
    In this paper, we present an open-source parsing environment (TĂźbingen Linguistic Parsing Architecture, TuLiPA) which uses Range Concatenation Grammar (RCG) as a pivot formalism, thus opening the way to the parsing of several mildly context-sensitive formalisms. This environment currently supports tree-based grammars (namely Tree-Adjoining Grammars (TAG) and Multi-Component Tree-Adjoining Grammars with Tree Tuples (TT-MCTAG)) and allows computation not only of syntactic structures, but also of the corresponding semantic representations. It is used for the development of a tree-based grammar for German

    A Tractable Extension of Linear Indexed Grammars

    Get PDF
    It has been shown that Linear Indexed Grammars can be processed in polynomial time by exploiting constraints which make possible the extensive use of structure-sharing. This paper describes a formalism that is more powerful than Linear Indexed Grammar, but which can also be processed in polynomial time using similar techniques. The formalism, which we refer to as Partially Linear PATR manipulates feature structures rather than stacks.Comment: 8 pages LaTeX, uses eaclap.sty, to appear in EACL-9

    An Alternative Conception of Tree-Adjoining Derivation

    Get PDF
    The precise formulation of derivation for tree-adjoining grammars has important ramifications for a wide variety of uses of the formalism, from syntactic analysis to semantic interpretation and statistical language modeling. We argue that the definition of tree-adjoining derivation must be reformulated in order to manifest the proper linguistic dependencies in derivations. The particular proposal is both precisely characterizable through a definition of TAG derivations as equivalence classes of ordered derivation trees, and computationally operational, by virtue of a compilation to linear indexed grammars together with an efficient algorithm for recognition and parsing according to the compiled grammar.Comment: 33 page

    The Effect of Non-tightness on Bayesian Estimation of PCFGs

    Get PDF
    Probabilistic context-free grammars have the unusual property of not always defining tight distributions (i.e., the sum of the “probabilities” of the trees the grammar generates can be less than one). This paper reviews how this non-tightness can arise and discusses its impact on Bayesian estimation of PCFGs. We begin by presenting the notion of “almost everywhere tight grammars ” and show that linear CFGs follow it. We then propose three different ways of reinterpreting non-tight PCFGs to make them tight, show that the Bayesian estimators in Johnson et al. (2007) are correct under one of them, and provide MCMC samplers for the other two. We conclude with a discussion of the impact of tightness empirically.

    Complexity of Problems of Commutative Grammars

    Full text link
    We consider commutative regular and context-free grammars, or, in other words, Parikh images of regular and context-free languages. By using linear algebra and a branching analog of the classic Euler theorem, we show that, under an assumption that the terminal alphabet is fixed, the membership problem for regular grammars (given v in binary and a regular commutative grammar G, does G generate v?) is P, and that the equivalence problem for context free grammars (do G_1 and G_2 generate the same language?) is in Π2P\mathrm{\Pi_2^P}

    Synchronous Context-Free Grammars and Optimal Linear Parsing Strategies

    Full text link
    Synchronous Context-Free Grammars (SCFGs), also known as syntax-directed translation schemata, are unlike context-free grammars in that they do not have a binary normal form. In general, parsing with SCFGs takes space and time polynomial in the length of the input strings, but with the degree of the polynomial depending on the permutations of the SCFG rules. We consider linear parsing strategies, which add one nonterminal at a time. We show that for a given input permutation, the problems of finding the linear parsing strategy with the minimum space and time complexity are both NP-hard

    Hairdressing in groups: a survey of combings and formal languages

    Full text link
    A group is combable if it can be represented by a language of words satisfying a fellow traveller property; an automatic group has a synchronous combing which is a regular language. This article surveys results for combable groups, in particular in the case where the combing is a formal language.Comment: 17 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTMon1/paper24.abs.htm
    • …
    corecore