4,317 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    A Methodology to Enable Concurrent Trade Space Exploration of Space Campaigns and Transportation Systems

    Get PDF
    Space exploration campaigns detail the ways and means to achieve goals for our human spaceflight programs. Significant strategic, financial, and programmatic investments over long timescales are required to execute them, and therefore must be justified to decision makers. To make an informed down-selection, many alternative campaign designs are presented at the conceptual-level, as a set and sequence of individual missions to perform that meets the goals and constraints of the campaign, either technical or programmatic. Each mission is executed by in-space transportation systems, which deliver either crew or cargo payloads to various destinations. Design of each of these transportation systems is highly dependent on campaign goals and even small changes in subsystem design parameters can prompt significant changes in the overall campaign strategy. However, the current state of the art describes campaign and vehicle design processes that are generally performed independently, which limits the ability to assess these sensitive impacts. The objective of this research is to establish a methodology for space exploration campaign design that represents transportation systems as a collection of subsystems and integrates its design process to enable concurrent trade space exploration. More specifically, the goal is to identify existing campaign and vehicle design processes to use as a foundation for improvement and eventual integration. In the past two decades, researchers have adopted terrestrial logistics and supply chain optimization processes to the space campaign design problem by accounting for the challenges that accompany space travel. Fundamentally, a space campaign is formulated as a network design problem where destinations, such as orbits or surfaces of planetary bodies, are represented as nodes with the routes between them as arcs. The objective of this design problem is to optimize the flow of commodities within network using available transport systems. Given the dynamic nature and the number of commodities involved, each campaign can be modeled as a time-expanded, generalized multi-commodity network flow and solved using a mixed integer programming algorithm. To address the challenge of modeling complex concept of operations (ConOps), this formulation was extended to include paths as a set of arcs, further enabling the inclusion of vehicle stacks and payload transfers in the campaign optimization process. Further, with the focus of transportation system within this research, the typical fixed orbital nodes in the logistics network are modified to represent ranges of orbits, categorized by their characteristic energy. This enables the vehicle design process to vary each orbit in the mission as it desires to find the best one per vehicle. By extension, once integrated, arc costs of dV and dT are updated each iteration. Once campaign goals and external constraints are included, the formulated campaign design process generates alternatives at the conceptual level, where each one identifies the optimal set and sequence of missions to perform. Representing transportation systems as a collection of subsystems introduces challenges in the design of each vehicle, with a high degree of coupling between each subsystem as well as the driving mission. Additionally, sizing of each subsystem can have many inputs and outputs linked across the system, resulting in a complex, multi-disciplinary analysis, and optimization problem. By leveraging the ontology within the Dynamic Rocket Equation Tool, DYREQT, this problem can be solved rapidly by defining each system as a hierarchy of elements and subelements, the latter corresponding to external subsystem-level sizing models. DYREQT also enables the construction of individual missions as a series of events, which can be directly driven and generated by the mission set found by the campaign optimization process. This process produces sized vehicles iteratively by using the mission input, subsystem level sizing models, and the ideal rocket equation. By conducting a literature review of campaign and vehicle design processes, the different pieces of the overall methodology are identified, but not the structure. The specific iterative solver, the corresponding convergence criteria, and initialization scheme are the primary areas for experimentation of this thesis. Using NASA’s reference 3-element Human Landing System campaign, the results of these experiments show that the methodology performs best with the vehicle sizing and synthesis process initializing and a path guess that minimizes dV. Further, a converged solution is found faster using non-linear Gauss Seidel fixed point iteration over Jacobi and set of convergence criteria that covers vehicle masses and mission data. To show improvement over the state of the art, and how it enables concurrent trade studies, this methodology is used at scale in a demonstration using NASA’s Design Reference Architecture 5.0. The LH2 Nuclear Thermal Propulsion (NTP) option is traded with NH3and H2O at the vehicle-level as a way to show the impacts of alternative propellants on the vehicle sizing and campaign strategy. Martian surface stay duration is traded at the campaign-level through two options: long-stay and short-stay. The methodology was able to produce four alternative campaigns over the course of two weeks, which provided data about the launch and aggregation strategy, mission profiles, high-level figures of merit, and subsystem-level vehicle sizes for each alternative. Expectedly, with their lower specific impulses, alternative NTP propellants showed significant growth in the overall mass required to execute each campaign, subsequently represented the number of drop tanks and launches. Further, the short-stay campaign option showed a similar overall mass required compared to its long-stay counterpart, but higher overall costs even given the fewer elements required. Both trade studies supported the overall hypothesis and that integrating the campaign and vehicle design processes addresses the coupling between then and directly shows the impacts of their sensitivities on each other. As a result, the research objective was fulfilled by producing a methodology that was able to address the key gaps identified in the current state of the art.Ph.D

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Automatic Control of General Anesthesia: New Developments and Clinical Experiments

    Get PDF
    L’anestesia generale è uno stato di coma farmacologicamente indotto, temporaneo e reversibile. Il suo obiettivo consiste nel provocare la perdita totale della coscienza e nel sopprimere la percezione del dolore. Essa costituisce un aspetto fondamentale per la medicina moderna in quanto consente di praticare interventi chirurgici invasivi senza causare ansia e dolore al paziente. Nella pratica clinica dell’anestesia totalmente endovenosa questi effetti vengono generalmente ottenuti mediante la somministrazione simultanea del farmaco ipnotico propofol e del farmaco analgesico remifentanil. Il dosaggio di questi farmaci viene gestito dal medico anestesista basandosi su linee guida farmacologiche e monitorando la risposta clinica del paziente. Recenti sviluppi nelle tecniche di elaborazione dei segnali fisiologici hanno consentito di ottenere degli indicatori quantitativi dello stato anestetico del paziente. Tali indicatori possono essere utilizzati come segnali di retroazione per sistemi di controllo automatico dell'anestesia. Lo sviluppo di questi sistemi ha come obiettivo quello di fornire uno strumento di supporto per l'anestesista. Il lavoro presentato in questa tesi è stato svolto nell'ambito del progetto di ricerca riguardante il controllo automatico dell'anestesia attivo presso l'Università degli Studi di Brescia. Esso è denominato ACTIVA (Automatic Control of Total IntraVenous Anesthesia) ed è il risultato della collaborazione tra il Gruppo di Ricerca sui Sistemi di Controllo dell’Università degli Studi di Brescia e l’Unità Operativa Anestesia e Rianimazione 2 degli Spedali Civili di Brescia. L’obiettivo del progetto ACTIVA consiste nello sviluppo teorico, nell’implementazione e nella validazione clinica di strategie di controllo innovative per il controllo automatico dell’anestesia totalmente endovenosa. Nel dettaglio, in questa tesi vengono inizialmente presentati i risultati sperimentali ottenuti con strutture di controllo basate sull'algoritmo PID e PID ad eventi per la somministrazione di propofol e remifentanil. Viene poi presentato lo sviluppo teorico e la validazione clinica di strutture di controllo predittivo basate su modello. Successivamente vengono presentati i risultati di uno studio in simulazione riguardante una soluzione di controllo innovativa che consente all'anestesista di regolare esplicitamente il bilanciamento tra propofol e remifentanil. Infine, vengono presentati gli sviluppi teorici ed i relativi studi in simulazione riguardanti soluzioni di controllo personalizzate per le fasi di induzione e mantenimento dell'anestesia.General anesthesia is a state of pharmacologically induced, temporary and reversible coma. Its goal is to cause total loss of consciousness and suppress the perception of pain. It constitutes a fundamental aspect of modern medicine as it allows invasive surgical procedures to be performed without causing anxiety and pain to the patient. In the clinical practice of total intravenous anesthesia, these effects are generally obtained by the simultaneous administration of the hypnotic drug propofol and of the analgesic drug remifentanil. The dosing of these drugs is managed by the anesthesiologist on the basis of pharmacological guidelines and by monitoring the patient's clinical response. Recent developments in physiological signal processing techniques have introduced the possibility to obtain quantitative indicators of the patient's anesthetic state. These indicators can be used as feedback signals for automatic anesthesia control systems. The development of these systems aims to provide a support tool for the anesthesiologist. The work presented in this thesis has been carried out in the framework of the research project concerning the automatic control anesthesia at the University of Brescia. The project is called ACTIVA (Automatic Control of Total IntraVenous Anesthesia) and is the result of the collaboration between the Research Group on Control Systems of the University of Brescia and the Anesthesia and Intensive Care Unit 2 of the Spedali Civili di Brescia. The objective of the ACTIVA project consists in the theoretical development, implementation, and clinical validation of innovative control strategies for the automatic control of total intravenous anesthesia. In detail, in this thesis the experimental results obtained with control structures based on the PID and on event-based PID controllers for the administration of propofol and remifentanil are initially presented. The theoretical development and clinical validation of model predictive control strategies is then proposed. Next, the results of a simulation study regarding an innovative control solution that allows the anesthesiologist to explicitly adjust the balance between propofol and remifentanil are given. Finally, the theoretical developments and the relative simulation studies concerning personalized control solutions for induction and maintenance phases of anesthesia are explained

    Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia

    Get PDF
    This book, Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia, makes a unique and needed contribution to the mentoring field as it focuses solely on mentoring in academia. This handbook is a collaborative institutional effort between Utah State University’s (USU) Empowering Teaching Open Access Book Series and the Mentoring Institute at the University of New Mexico (UNM). This book is available through (a) an e-book through Pressbooks, (b) a downloadable PDF version on USU’s Open Access Book Series website), and (c) a print version available for purchase on the USU Empower Teaching Open Access page, and on Amazon

    Modular Collaborative Program Analysis

    Get PDF
    With our world increasingly relying on computers, it is important to ensure the quality, correctness, security, and performance of software systems. Static analysis that computes properties of computer programs without executing them has been an important method to achieve this for decades. However, static analysis faces major chal- lenges in increasingly complex programming languages and software systems and increasing and sometimes conflicting demands for soundness, precision, and scalability. In order to cope with these challenges, it is necessary to build static analyses for complex problems from small, independent, yet collaborating modules that can be developed in isolation and combined in a plug-and-play manner. So far, no generic architecture to implement and combine a broad range of dissimilar static analyses exists. The goal of this thesis is thus to design such an architecture and implement it as a generic framework for developing modular, collaborative static analyses. We use several, diverse case-study analyses from which we systematically derive requirements to guide the design of the framework. Based on this, we propose the use of a blackboard-architecture style collaboration of analyses that we implement in the OPAL framework. We also develop a formal model of our architectures core concepts and show how it enables freely composing analyses while retaining their soundness guarantees. We showcase and evaluate our architecture using the case-study analyses, each of which shows how important and complex problems of static analysis can be addressed using a modular, collaborative implementation style. In particular, we show how a modular architecture for the construction of call graphs ensures consistent soundness of different algorithms. We show how modular analyses for different aspects of immutability mutually benefit each other. Finally, we show how the analysis of method purity can benefit from the use of other complex analyses in a collaborative manner and from exchanging different analysis implementations that exhibit different characteristics. Each of these case studies improves over the respective state of the art in terms of soundness, precision, and/or scalability and shows how our architecture enables experimenting with and fine-tuning trade-offs between these qualities

    Expectations and expertise in artificial intelligence: specialist views and historical perspectives on conceptualisation, promise, and funding

    Get PDF
    Artificial intelligence’s (AI) distinctiveness as a technoscientific field that imitates the ability to think went through a resurgence of interest post-2010, attracting a flood of scientific and popular expectations as to its utopian or dystopian transformative consequences. This thesis offers observations about the formation and dynamics of expectations based on documentary material from the previous periods of perceived AI hype (1960-1975 and 1980-1990, including in-between periods of perceived dormancy), and 25 interviews with UK-based AI specialists, directly involved with its development, who commented on the issues during the crucial period of uncertainty (2017-2019) and intense negotiation through which AI gained momentum prior to its regulation and relatively stabilised new rounds of long-term investment (2020-2021). This examination applies and contributes to longitudinal studies in the sociology of expectations (SoE) and studies of experience and expertise (SEE) frameworks, proposing a historical sociology of expertise and expectations framework. The research questions, focusing on the interplay between hype mobilisation and governance, are: (1) What is the relationship between AI practical development and the broader expectational environment, in terms of funding and conceptualisation of AI? (2) To what extent does informal and non-developer assessment of expectations influence formal articulations of foresight? (3) What can historical examinations of AI’s conceptual and promissory settings tell about the current rebranding of AI? The following contributions are made: (1) I extend SEE by paying greater attention to the interplay between technoscientific experts and wider collective arenas of discourse amongst non-specialists and showing how AI’s contemporary research cultures are overwhelmingly influenced by the hype environment but also contribute to it. This further highlights the interaction between competing rationales focusing on exploratory, curiosity-driven scientific research against exploitation-oriented strategies at formal and informal levels. (2) I suggest benefits of examining promissory environments in AI and related technoscientific fields longitudinally, treating contemporary expectations as historical products of sociotechnical trajectories through an authoritative historical reading of AI’s shifting conceptualisation and attached expectations as a response to availability of funding and broader national imaginaries. This comes with the benefit of better perceiving technological hype as migrating from social group to social group instead of fading through reductionist cycles of disillusionment; either by rebranding of technical operations, or by the investigation of a given field by non-technical practitioners. It also sensitises to critically examine broader social expectations as factors for shifts in perception about theoretical/basic science research transforming into applied technological fields. Finally, (3) I offer a model for understanding the significance of interplay between conceptualisations, promising, and motivations across groups within competing dynamics of collective and individual expectations and diverse sources of expertise

    PLAYING-RELATED MUSCULOSKELETAL DISORDERS AMONG MUSIC STUDENTS IN EUROPE

    Get PDF
    Background and aims: The achievement and improvement of musical competences and technical abilities to reach the highest levels of performance may expose music students to a wide range of playing-related musculoskeletal disorders (PRMDs). The main aim of the present thesis was to longitudinally identify the factors associated with increased risk of PRMD onset among music students enrolled in different pan-European music institutions. Further goals were to determine the prevalence and incidence of PRMDs amongst music students during their training, as well as to describe and characterise the study population. Methods: 850 students from 56 European conservatories and music universities completed a web-based questionnaire on lifestyle and physical activity participation levels, musical practice habits, behaviours toward prevention, health history and PRMDs, as well as psychological distress, perfectionism and fatigue. The onset of PRMDs was assessed prospectively at 6 and 12 months. Results: At baseline, 560 participants (65.0%) self-reported a positive history of MSK complaints in the previous 12 months, 408 (48.0%) of whom self-reported PRMDs. Self-reported PRMDs were significantly associated with coming from West Europe (RRR=4.524; RRR>1), being a first- or a second-year Masters student (RRR=2.747; RRR>1), having more years of experience (RRR=1.040; RRR>1) and higher rates of perceived exertion after 45 minutes of practice without breaks (RRR=1.044; RRR>1). The incidences of PRMD onset at 6 and 12 months were 28.8% and 49.0%, respectively. Longitudinally, changes in physical activity level (both increase and decrease; 6-month AOR=2.343, 12-month-AOR=2.346; AOR>1), increased levels of fatigue (6-month AOR=1.084, 12-month-AOR=1.081; AOR>1) and increased level of socially-prescribed perfectionism (6-month AOR=1.102; AOR>1) were significantly associated with PRMD onset. The presence of MSK complaints at baseline (6-month AOR=0.145, 12-month-AOR=0.441; AOR<1), as well as changes to BMI and to levels of psychological distress (12-month AOR=0.663 and 0.914, respectively; AOR<1) retarded the onset of PRMDs. Conclusions: Cross-sectional and longitudinal findings showing high prevalence and incidence of PRMDs amongst music students, have been critically appraised as potential correlates, determinants and factors in the development of PRMDs. The findings offer contextualisation for revisiting contemporary evidence-based preventive strategies and optimisation of tailor-made interventions aimed at minimising the impact of PRMDs
    • …
    corecore