5 research outputs found

    Extended Integrated Interleaved Codes over any Field with Applications to Locally Recoverable Codes

    Full text link
    Integrated Interleaved (II) and Extended Integrated Interleaved (EII) codes are a versatile alternative for Locally Recoverable (LRC) codes, since they require fields of relatively small size. II and EII codes are generally defined over Reed-Solomon type of codes. A new comprehensive definition of EII codes is presented, allowing for EII codes over any field, and in particular, over the binary field GF(2)GF(2). The traditional definition of II and EII codes is shown to be a special case of the new definition. Improvements over previous constructions of LRC codes, in particular, for binary codes, are given, as well as cases meeting an upper bound on the minimum distance. Properties of the codes are presented as well, in particular, an iterative decoding algorithm on rows and columns generalizing the iterative decoding algorithm of product codes. Two applications are also discussed: one is finding a systematic encoding of EII codes such that the parity symbols have a balanced distribution on rows, and the other is the problem of ordering the symbols of an EII code such that the maximum length of a correctable burst is achieved.Comment: 25 page

    Asymmetric Quantum Concatenated and Tensor Product Codes with Large Z-Distances

    Full text link
    In this paper, we present a new construction of asymmetric quantum codes (AQCs) by combining classical concatenated codes (CCs) with tensor product codes (TPCs), called asymmetric quantum concatenated and tensor product codes (AQCTPCs) which have the following three advantages. First, only the outer codes in AQCTPCs need to satisfy the orthogonal constraint in quantum codes, and any classical linear code can be used for the inner, which makes AQCTPCs very easy to construct. Second, most AQCTPCs are highly degenerate, which means they can correct many more errors than their classical TPC counterparts. Consequently, we construct several families of AQCs with better parameters than known results in the literature. Third, AQCTPCs can be efficiently decoded although they are degenerate, provided that the inner and outer codes are efficiently decodable. In particular, we significantly reduce the inner decoding complexity of TPCs from Ω(n2an1)(a>1)\Omega(n_2a^{n_1})(a>1) to O(n2)O(n_2) by considering error degeneracy, where n1n_1 and n2n_2 are the block length of the inner code and the outer code, respectively. Furthermore, we generalize our concatenation scheme by using the generalized CCs and TPCs correspondingly.Comment: 36pages, accepted by IEEE Transactions on Communication

    Universal and Dynamic Locally Repairable Codes with Maximal Recoverability via Sum-Rank Codes

    Full text link
    Locally repairable codes (LRCs) are considered with equal or unequal localities, local distances and local field sizes. An explicit two-layer architecture with a sum-rank outer code is obtained, having disjoint local groups and achieving maximal recoverability (MR) for all families of local linear codes (MDS or not) simultaneously, up to a specified maximum locality r r . Furthermore, the local linear codes (thus the localities, local distances and local fields) can be efficiently and dynamically modified without global recoding or changes in architecture or outer code, while preserving the MR property, easily adapting to new configurations in storage or new hot and cold data. In addition, local groups and file components can be added, removed or updated without global recoding. The construction requires global fields of size roughly gr g^r , for g g local groups and maximum or specified locality r r . For equal localities, these global fields are smaller than those of previous MR-LRCs when r≤h r \leq h (global parities). For unequal localities, they provide an exponential field size reduction on all previous best known MR-LRCs. For bounded localities and a large number of local groups, the global erasure-correction complexity of the given construction is comparable to that of Tamo-Barg codes or Reed-Solomon codes with local replication, while local repair is as efficient as for the Cartesian product of the local codes. Reed-Solomon codes with local replication and Cartesian products are recovered from the given construction when r=1 r=1 and h=0 h = 0 , respectively. The given construction can also be adapted to provide hierarchical MR-LRCs for all types of hierarchies and parameters. Finally, subextension subcodes and sum-rank alternant codes are introduced to obtain further exponential field size reductions, at the expense of lower information rates

    Multiple-Layer Integrated Interleaved Codes: A Class of Hierarchical Locally Recoverable Codes

    Full text link
    The traditional definition of Integrated Interleaved (II) codes generally assumes that the component nested codes are either Reed-Solomon (RS) or shortened Reed-Solomon codes. By taking general classes of codes, we present a recursive construction of Extended Integrated Interleaved (EII) codes into multiple layers, a problem that brought attention in literature for II codes. The multiple layer approach allows for a hierarchical scheme where each layer of the code provides for a different locality. In particular, we present the erasure-correcting capability of the new codes and we show that they are ideally suited as Locally Recoverable (LRC) codes due to their hierarchical locality and the small finite field required by the construction. Properties of the multiple layer EII codes, like their minimum distance and dimension, as well as their erasure decoding algorithms, parity-check matrices and performance analysis, are provided and illustrated with examples. Finally, we will observe that the parity-check matrices of high layer EII codes have low density.Comment: 21 pages, 1 tabl

    On Optimal Locally Repairable Codes and Generalized Sector-Disk Codes

    Full text link
    Optimal locally repairable codes with information locality are considered. Optimal codes are constructed, whose length is also order-optimal with respect to a new bound on the code length derived in this paper. The length of the constructed codes is super-linear in the alphabet size, which improves upon the well known pyramid codes, whose length is only linear in the alphabet size. The recoverable erasure patterns are also analyzed for the new codes. Based on the recoverable erasure patterns, we construct generalized sector-disk (GSD) codes, which can recover from disk erasures mixed with sector erasures in a more general setting than known sector-disk (SD) codes. Additionally, the number of sectors in the constructed GSD codes is super-linear in the alphabet size, compared with known SD codes, whose number of sectors is only linear in the alphabet size
    corecore