17 research outputs found

    Design and analysis of robust controllers for directional drilling tools

    Get PDF
    Directional drilling is a very important tool for the development of oil and gas deposits. Attitude control which enables directional drilling for the efficient placement of the directional drilling tools in petroleum producing zones is reviewed along with the various engineering requirements or constraints. This thesis explores a multivariable attitude governing plant model as formulated in Panchal et al. (2010) which is used for developing robust control techniques. An inherent input and measurement delay which accounts for the plant's dead-time is included in the design of the controllers. A Smith Predictor controller is developed for reducing the effect of this dead-time. The developed controllers are compared for performance and robustness using structured singular value analysis and also for their performance indicated by the transient response of the closed loop models. Results for the transient non-linear simulation of the proposed controllers are also presented. The results obtained indicate that the objectives are satisfactorily achieved

    Clustering Techniques for Stable Linear Dynamical Systems with applications to Hard Disk Drives

    Full text link
    In Robust Control and Data Driven Robust Control design methodologies, multiple plant transfer functions or a family of transfer functions are considered and a common controller is designed such that all the plants that fall into this family are stabilized. Though the plants are stabilized, the controller might be sub-optimal for each of the plants when the variations in the plants are large. This paper presents a way of clustering stable linear dynamical systems for the design of robust controllers within each of the clusters such that the controllers are optimal for each of the clusters. First a k-medoids algorithm for hard clustering will be presented for stable Linear Time Invariant (LTI) systems and then a Gaussian Mixture Models (GMM) clustering for a special class of LTI systems, common for Hard Disk Drive plants, will be presented.Comment: 6 pages, 4 figure

    Identification of Unmodeled Dynamics in Rotor Systems Using Mu-Synthesis Approach

    Get PDF
    It is well recognized that analytical models only approximate the true dynamics of analyzed rotating machines, due to the presence of components that are inherently difficult to model. Such models of rotating machines are driven by the best engineering knowledge and experience, and very often are updated based on experimental results. The problem of unmodeled or missing dynamics can be exacerbated in the presence of rotor structural damage such as a transverse crack on a shaft. This thesis will present an effective approach for model updating using advanced tools developed in robust control theory, specifically mu-synthesis. The methodology will be introduced based on a simple three-mass system and then applied to identification of the minute changes in the dynamics of the rotor test rig due to the presence of a transverse crack. Experimental data collected from the cracked rotor rig will be utilized to validate the developed approac

    Identification of Unmodeled Dynamics in Rotor Systems Using Mu-Synthesis Approach

    Get PDF
    It is well recognized that analytical models only approximate the true dynamics of analyzed rotating machines, due to the presence of components that are inherently difficult to model. Such models of rotating machines are driven by the best engineering knowledge and experience, and very often are updated based on experimental results. The problem of unmodeled or missing dynamics can be exacerbated in the presence of rotor structural damage such as a transverse crack on a shaft. This thesis will present an effective approach for model updating using advanced tools developed in robust control theory, specifically mu-synthesis. The methodology will be introduced based on a simple three-mass system and then applied to identification of the minute changes in the dynamics of the rotor test rig due to the presence of a transverse crack. Experimental data collected from the cracked rotor rig will be utilized to validate the developed approac

    Interactions of Aircraft Design and Control: Actuators Sizing and Optimization for an Unstable Blended Wing-Body

    Get PDF
    In this paper the problem of integrated design and control for a civil blended wing-body aircraft is addressed. Indeed this configuration faces remarkable challenges related to handling qualities: namely the aircraft configuration in this study features a strong longitudinal instability for some specific flight points. Moreover it may lack control efficiency despite large and redundant movables. Stabilizing such a configuration may then lead to high control surfaces rates, meaning significant energy penalty and installation mass for flight control actuators, as well as challenges for actuators space allocation. Those penalties should therefore be taken into account early in the conceptual design phase, instead of being checked afterwards. Our approach consists in simultaneously designing a stabilizing controller and actuators dynamic characteristics, namely their bandwidth, for a given aircraft configuration. Our method relies on latest developments on nonsmooth optimization techniques for robust control design. For any aircraft configuration, guaranteed stability performance, as well as optimized control surfaces allocation with respect to their relative efficiency and inertia, are obtained. From these results, a segregation among trim and maneuver control surfaces is obtained, with guarantee that the later ones are able to cope with aircraft instability. Then it is checked that remaining trim control surfaces are sufficient for equilibrating the aircraft in any flight condition. This approach allows for a fast prototyping of control surfaces and actuators for unstable configurations. Different control surfaces layouts are evaluated in order to show the exibility of the method

    Controller Design for Active Vibration Damping with Inertial Actuators

    Get PDF
    In the machining industry, there is a constant need to improve productivity while maintaining required dimensional tolerances and surface quality. The self-excited vibration called chatter is one of the main factors limiting machining productivity. Chatter produces unstable cutting conditions during machining and unstable forces will damage and shorten the life of the machine tool. It can also damage the cutting tool, machining components as well as produce a poor surface finish on the workpiece. Researchers have developed various chatter suppression techniques such as changing process parameters, spindle speeds, and using passive dampers. However, many of these methods are not very robust to changing dynamics in the machine tool due to changing machine positioning, cutting setups, etc. Active vibration damping with a force actuator is a robust method of adding damping by due to its bandwidth and variable controller gains. However, the commissioning of the controller design for the actuators is not trivial and requires significant manual tuning to reach optimal productivity. The research presented in this thesis aims to simplify and automate the controller design process for force actuators. A frequency domain, sensitivity based automatic controller tuning method for force actuators has been developed. This method uses the measured actuator dynamics and open-loop system dynamics to develop a prediction tool for closed-loop responses without needing to have the complete system model (model free). By monitoring the predicted closed-loop response of various virtually designed controllers, an optimal controller is found amongst the candidate parameter values. The stability of the system and actuator is monitored during the search to ensure that the system is stable throughout its bandwidth that the actuator does not become saturated. The controller is then experimentally tested to ensure that the predicted output is the same as the real output. In cases where the system has several vibration modes that are in counter-phase and close in frequency, the model-free approach does not perform well. A more complex model-based control law has also been developed and implemented. The method automatically identifies a transfer function model for the measured open-loop system dynamics and synthesizes mixed-sensitivity optimization based controller to damp out the modes in counter-phase. In order to verify that the model-based controllers can reduce vibration modes in counter-phase, a small-scale experimental setup was developed to mimic machine tools with vibration modes in counter-phase. A flexure was designed and fabricated. A shaker from Modal Shop is used as an active damping actuator to reduce the flexure’s vibration modes. It was concluded that while the model-based controller synthesis techniques were able to damp the vibration modes in counter phase, the flexure was too simplistic and the model-free controller was able to achieve similar results

    Load Disturbance Torque Estimation for Motor Drive Systems with Application to Electric Power Steering System

    Get PDF
    Motors are widely used in industries due to its ability to provide high mechanical power in speed and torque applications. Its flexibility to control and quick response are other reasons for its widespread use. Disturbance torque acting on the motor shaft is a major factor which affects the motor performance. Considering the load disturbance torque while designing the control for the motor makes the system more robust to load changes. Most disturbance observers are designed for steady state load conditions. The observer designed here considers a general case making no assumptions about the load torque dynamics. The observer design methods to be used under different disturbance conditions are also discussed and the performances compared. The designed observer is tested in a Hardware-in-Loop (HIL) setup for different load conditions. A motor load torque estimation based Fault Tolerant Control (FTC) is then designed for an Electric Power Steering (EPS) system

    Design and verification of Guidance, Navigation and Control systems for space applications

    Get PDF
    In the last decades, systems have strongly increased their complexity in terms of number of functions that can be performed and quantity of relationships between functions and hardware as well as interactions of elements and disciplines concurring to the definition of the system. The growing complexity remarks the importance of defining methods and tools that improve the design, verification and validation of the system process: effectiveness and costs reduction without loss of confidence in the final product are the objectives that have to be pursued. Within the System Engineering context, the modern Model and Simulation based approach seems to be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) starts from the idea that it is possible at any moment to verify, through simulation sessions and according to the phase of the life cycle, the feasibility, the capabilities and the performances of the system. Simulation is used during the engineering process and can be classified from fully numerical (i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware simulation (where the system is represented by real hardware and software modules in their operational environment). Within this range of simulations, a few important stages can be defined: algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the loop (HIL), and hybrid configurations among those. The research activity, in which this thesis is inserted, aims at defining and validating an iterative methodology (based on Model and Simulation approach) in support of engineering teams and devoted to improve the effectiveness of the design and verification of a space system with particular interest in Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the common interest and background of the groups involved in this research program (ASSET at Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently complex (demanding both specialist knowledge and system engineer skills) and vital for whatever spacecraft and, last but not least the verification of its behavior is difficult on ground because strong limitations on dynamics and environment reproduction arise. Considering that the verification should be performed along the entire product life cycle, a tool and a facility, a simulator, independent from the complexity level of the test and the stage of the project, is needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the proposed methodology. It has been entirely designed and developed from the requirements definition to the software implementation and hardware construction, up to the assembly, integration and verification of the first simulator release. In addition, the development of this technology met the modern standards on software development and project management. StarSim is a unique and self-contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and loss of information that may arise using different software, simulation tools and facilities along the various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real world, ease of data management, effectiveness and congruence of the outputs with respect to the inputs are the sought-after features in the StarSim design. For every iteration of the methodology, StarSim guarantees the possibility to verify the behavior of the system under test thanks to the permanent availability of virtual models, that substitute all those elements not yet available and all the non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user friendly database of models and interfaces that cover different levels of detail and fidelity, and supports the updating of the database allowing the user to create custom models (following few, simple rules). Progressively, pieces of the on board software and hardware can be introduced without stopping the process of design and verification, avoiding delays and loss of resources. StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an educational project carried out by students and researchers of the “CubeSat Team Polito” in which StarSim has been mainly used for the payload development, an Active Attitude Determination and Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been performed along all the phases of the project, successfully verifying a great number of functional and operational requirements. In particular, attitude determination algorithms, control laws, modes of operation have been selected and verified; software has been developed step by step and the bugs-free executable files have been loaded on the micro-controller. All the interfaces and protocols as well as data and commands handling have been verified. Actuators, logic and electrical circuits have been designed, built and tested and sensors calibration has been performed. Problems such as real time and synchronization have been solved and a complete hardware in the loop simulation test campaign both for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a great number of CubeSat functional and operational requirements. The case study represents the first validation of the methodology with the first release of StarSim. It has been proven that the methodology is effective in demonstrating that improving the design and verification activities is a key point to increase the confidence level in the success of a space mission
    corecore