87,415 research outputs found

    Characterizing and Reasoning about Probabilistic and Non-Probabilistic Expectation

    Full text link
    Expectation is a central notion in probability theory. The notion of expectation also makes sense for other notions of uncertainty. We introduce a propositional logic for reasoning about expectation, where the semantics depends on the underlying representation of uncertainty. We give sound and complete axiomatizations for the logic in the case that the underlying representation is (a) probability, (b) sets of probability measures, (c) belief functions, and (d) possibility measures. We show that this logic is more expressive than the corresponding logic for reasoning about likelihood in the case of sets of probability measures, but equi-expressive in the case of probability, belief, and possibility. Finally, we show that satisfiability for these logics is NP-complete, no harder than satisfiability for propositional logic.Comment: To appear in Journal of the AC

    A Reasoning System for a First-Order Logic of Limited Belief

    Full text link
    Logics of limited belief aim at enabling computationally feasible reasoning in highly expressive representation languages. These languages are often dialects of first-order logic with a weaker form of logical entailment that keeps reasoning decidable or even tractable. While a number of such logics have been proposed in the past, they tend to remain for theoretical analysis only and their practical relevance is very limited. In this paper, we aim to go beyond the theory. Building on earlier work by Liu, Lakemeyer, and Levesque, we develop a logic of limited belief that is highly expressive while remaining decidable in the first-order and tractable in the propositional case and exhibits some characteristics that make it attractive for an implementation. We introduce a reasoning system that employs this logic as representation language and present experimental results that showcase the benefit of limited belief.Comment: 22 pages, 0 figures, Twenty-sixth International Joint Conference on Artificial Intelligence (IJCAI-17

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    Expressive Stream Reasoning with Laser

    Full text link
    An increasing number of use cases require a timely extraction of non-trivial knowledge from semantically annotated data streams, especially on the Web and for the Internet of Things (IoT). Often, this extraction requires expressive reasoning, which is challenging to compute on large streams. We propose Laser, a new reasoner that supports a pragmatic, non-trivial fragment of the logic LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser implements a novel evaluation procedure which annotates formulae to avoid the re-computation of duplicates at multiple time points. This procedure, combined with a judicious implementation of the LARS operators, is responsible for significantly better runtimes than the ones of other state-of-the-art systems like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP solver Clingo. This enables the application of expressive logic-based reasoning to large streams and opens the door to a wider range of stream reasoning use cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201

    Modal Logics of Topological Relations

    Full text link
    Logical formalisms for reasoning about relations between spatial regions play a fundamental role in geographical information systems, spatial and constraint databases, and spatial reasoning in AI. In analogy with Halpern and Shoham's modal logic of time intervals based on the Allen relations, we introduce a family of modal logics equipped with eight modal operators that are interpreted by the Egenhofer-Franzosa (or RCC8) relations between regions in topological spaces such as the real plane. We investigate the expressive power and computational complexity of logics obtained in this way. It turns out that our modal logics have the same expressive power as the two-variable fragment of first-order logic, but are exponentially less succinct. The complexity ranges from (undecidable and) recursively enumerable to highly undecidable, where the recursively enumerable logics are obtained by considering substructures of structures induced by topological spaces. As our undecidability results also capture logics based on the real line, they improve upon undecidability results for interval temporal logics by Halpern and Shoham. We also analyze modal logics based on the five RCC5 relations, with similar results regarding the expressive power, but weaker results regarding the complexity
    • …
    corecore