8,994 research outputs found

    Expressing combinatorial optimization problems by Linear Programs

    Get PDF
    AbstractMany combinatorial optimization problems call for the optimization of a linear function over a certain polytope. Typically, these polytopes have an exponential number of facets. We explore the problem of finding small linear programming formulations when one may use any new variables and constraints. We show that expressing the matching and the Traveling Salesman Problem by a symmetric linear program requires exponential size. We relate the minimum size needed by a LP to express a polytope to a combinatorial parameter, point out some connections with communication complexity theory, and examine the vertex packing polytope for some classes of graphs

    Average case polyhedral complexity of the maximum stable set problem

    Full text link
    We study the minimum number of constraints needed to formulate random instances of the maximum stable set problem via linear programs (LPs), in two distinct models. In the uniform model, the constraints of the LP are not allowed to depend on the input graph, which should be encoded solely in the objective function. There we prove a 2Ω(n/logn)2^{\Omega(n/ \log n)} lower bound with probability at least 122n1 - 2^{-2^n} for every LP that is exact for a randomly selected set of instances; each graph on at most n vertices being selected independently with probability p2(n/42)+np \geq 2^{-\binom{n/4}{2}+n}. In the non-uniform model, the constraints of the LP may depend on the input graph, but we allow weights on the vertices. The input graph is sampled according to the G(n, p) model. There we obtain upper and lower bounds holding with high probability for various ranges of p. We obtain a super-polynomial lower bound all the way from p=Ω(log6+ε/n)p = \Omega(\log^{6+\varepsilon} / n) to p=o(1/logn)p = o (1 / \log n). Our upper bound is close to this as there is only an essentially quadratic gap in the exponent, which currently also exists in the worst-case model. Finally, we state a conjecture that would close this gap, both in the average-case and worst-case models

    The matching polytope does not admit fully-polynomial size relaxation schemes

    Full text link
    The groundbreaking work of Rothvo{\ss} [arxiv:1311.2369] established that every linear program expressing the matching polytope has an exponential number of inequalities (formally, the matching polytope has exponential extension complexity). We generalize this result by deriving strong bounds on the polyhedral inapproximability of the matching polytope: for fixed 0<ε<10 < \varepsilon < 1, every polyhedral (1+ε/n)(1 + \varepsilon / n)-approximation requires an exponential number of inequalities, where nn is the number of vertices. This is sharp given the well-known ρ\rho-approximation of size O((nρ/(ρ1)))O(\binom{n}{\rho/(\rho-1)}) provided by the odd-sets of size up to ρ/(ρ1)\rho/(\rho-1). Thus matching is the first problem in PP, whose natural linear encoding does not admit a fully polynomial-size relaxation scheme (the polyhedral equivalent of an FPTAS), which provides a sharp separation from the polynomial-size relaxation scheme obtained e.g., via constant-sized odd-sets mentioned above. Our approach reuses ideas from Rothvo{\ss} [arxiv:1311.2369], however the main lower bounding technique is different. While the original proof is based on the hyperplane separation bound (also called the rectangle corruption bound), we employ the information-theoretic notion of common information as introduced in Braun and Pokutta [http://eccc.hpi-web.de/report/2013/056/], which allows to analyze perturbations of slack matrices. It turns out that the high extension complexity for the matching polytope stem from the same source of hardness as for the correlation polytope: a direct sum structure.Comment: 21 pages, 3 figure

    Fooling sets and rank

    Full text link
    An n×nn\times n matrix MM is called a \textit{fooling-set matrix of size nn} if its diagonal entries are nonzero and Mk,M,k=0M_{k,\ell} M_{\ell,k} = 0 for every kk\ne \ell. Dietzfelbinger, Hromkovi{\v{c}}, and Schnitger (1996) showed that n \le (\mbox{rk} M)^2, regardless of over which field the rank is computed, and asked whether the exponent on \mbox{rk} M can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size n = \binom{\mbox{rk} M+1}{2}. In nonzero characteristic, we construct an infinite family of matrices with n= (1+o(1))(\mbox{rk} M)^2.Comment: 10 pages. Now resolves the open problem also in characteristic

    Approximation Limits of Linear Programs (Beyond Hierarchies)

    Full text link
    We develop a framework for approximation limits of polynomial-size linear programs from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any linear program as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n^{1/2-eps})-approximations for CLIQUE require linear programs of size 2^{n^\Omega(eps)}. (This lower bound applies to linear programs using a certain encoding of CLIQUE as a linear optimization problem.) Moreover, we establish a similar result for approximations of semidefinite programs by linear programs. Our main ingredient is a quantitative improvement of Razborov's rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of certain perturbations of the unique disjointness matrix.Comment: 23 pages, 2 figure
    corecore