39,860 research outputs found

    Output Regulation for Systems on Matrix Lie-group

    Full text link
    This paper deals with the problem of output regulation for systems defined on matrix Lie-Groups. Reference trajectories to be tracked are supposed to be generated by an exosystem, defined on the same Lie-Group of the controlled system, and only partial relative error measurements are supposed to be available. These measurements are assumed to be invariant and associated to a group action on a homogeneous space of the state space. In the spirit of the internal model principle the proposed control structure embeds a copy of the exosystem kinematic. This control problem is motivated by many real applications fields in aerospace, robotics, projective geometry, to name a few, in which systems are defined on matrix Lie-groups and references in the associated homogenous spaces

    Local observers on linear Lie groups with linear estimation error dynamics

    Get PDF
    This paper proposes local exponential observers for systems on linear Lie groups. We study two different classes of systems. In the first class, the full state of the system evolves on a linear Lie group and is available for measurement. In the second class, only part of the system's state evolves on a linear Lie group and this portion of the state is available for measurement. In each case, we propose two different observer designs. We show that, depending on the observer chosen, local exponential stability of one of the two observation error dynamics, left- or right-invariant error dynamics, is obtained. For the first class of systems these results are developed by showing that the estimation error dynamics are differentially equivalent to a stable linear differential equation on a vector space. For the second class of system, the estimation error dynamics are almost linear. We illustrate these observer designs on an attitude estimation problem

    Synchronization with partial state coupling on SO(n)

    Full text link
    This paper studies autonomous synchronization of k agents whose states evolve on SO(n), but which are only coupled through the action of their states on one "reference vector" in Rn for each link. Thus each link conveys only partial state information at each time, and to reach synchronization agents must combine this information over time or throughout the network. A natural gradient coupling law for synchronization is proposed. Extensive convergence analysis of the coupled agents is provided, both for fixed and time-varying reference vectors. The case of SO(3) with fixed reference vectors is discussed in more detail. For comparison, we also treat the equivalent setting in Rn, i.e. with states in Rn and connected agents comparing scalar product of their states with a reference vector.Comment: to be submitted to SIAM Journal on Control and Optimizatio

    Search complexity and resource scaling for the quantum optimal control of unitary transformations

    Full text link
    The optimal control of unitary transformations is a fundamental problem in quantum control theory and quantum information processing. The feasibility of performing such optimizations is determined by the computational and control resources required, particularly for systems with large Hilbert spaces. Prior work on unitary transformation control indicates that (i) for controllable systems, local extrema in the search landscape for optimal control of quantum gates have null measure, facilitating the convergence of local search algorithms; but (ii) the required time for convergence to optimal controls can scale exponentially with Hilbert space dimension. Depending on the control system Hamiltonian, the landscape structure and scaling may vary. This work introduces methods for quantifying Hamiltonian-dependent and kinematic effects on control optimization dynamics in order to classify quantum systems according to the search effort and control resources required to implement arbitrary unitary transformations

    Exponential stabilization of driftless nonlinear control systems using homogeneous feedback

    Get PDF
    This paper focuses on the problem of exponential stabilization of controllable, driftless systems using time-varying, homogeneous feedback. The analysis is performed with respect to a homogeneous norm in a nonstandard dilation that is compatible with the algebraic structure of the control Lie algebra. It can be shown that any continuous, time-varying controller that achieves exponential stability relative to the Euclidean norm is necessarily non-Lipschitz. Despite these restrictions, we provide a set of constructive, sufficient conditions for extending smooth, asymptotic stabilizers to homogeneous, exponential stabilizers. The modified feedbacks are everywhere continuous, smooth away from the origin, and can be extended to a large class of systems with torque inputs. The feedback laws are applied to an experimental mobile robot and show significant improvement in convergence rate over smooth stabilizers

    Observers for invariant systems on Lie groups with biased input measurements and homogeneous outputs

    Full text link
    This paper provides a new observer design methodology for invariant systems whose state evolves on a Lie group with outputs in a collection of related homogeneous spaces and where the measurement of system input is corrupted by an unknown constant bias. The key contribution of the paper is to study the combined state and input bias estimation problem in the general setting of Lie groups, a question for which only case studies of specific Lie groups are currently available. We show that any candidate observer (with the same state space dimension as the observed system) results in non-autonomous error dynamics, except in the trivial case where the Lie-group is Abelian. This precludes the application of the standard non-linear observer design methodologies available in the literature and leads us to propose a new design methodology based on employing invariant cost functions and general gain mappings. We provide a rigorous and general stability analysis for the case where the underlying Lie group allows a faithful matrix representation. We demonstrate our theory in the example of rigid body pose estimation and show that the proposed approach unifies two competing pose observers published in prior literature.Comment: 11 page
    • …
    corecore