159 research outputs found

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Hardness of Sparse Sets and Minimal Circuit Size Problem

    Get PDF
    We develop a polynomial method on finite fields to amplify the hardness of spare sets in nondeterministic time complexity classes on a randomized streaming model. One of our results shows that if there exists a 2no(1)2^{n^{o(1)}}-sparse set in NTIME(2no(1))NTIME(2^{n^{o(1)}}) that does not have any randomized streaming algorithm with no(1)n^{o(1)} updating time, and no(1)n^{o(1)} space, then NEXP≠BPPNEXP\not=BPP, where a f(n)f(n)-sparse set is a language that has at most f(n)f(n) strings of length nn. We also show that if MCSP is ZPPZPP-hard under polynomial time truth-table reductions, then EXP≠ZPPEXP\not=ZPP

    Hardness of Sparse Sets and Minimal Circuit Size Problem

    Get PDF
    We study the magnification of hardness of sparse sets in nondeterministic time complexity classes on a randomized streaming model. One of our results shows that if there exists a 2no(1) -sparse set in NDTIME(2no(1)) that does not have any randomized streaming algorithm with no(1) updating time, and no(1) space, then NEXP≠BPP , where a f(n)-sparse set is a language that has at most f(n) strings of length n. We also show that if MCSP is ZPP -hard under polynomial time truth-table reductions, then EXP≠ZPP

    On the (Non) NP-Hardness of Computing Circuit Complexity

    Get PDF
    The Minimum Circuit Size Problem (MCSP) is: given the truth table of a Boolean function f and a size parameter k, is the circuit complexity of f at most k? This is the definitive problem of circuit synthesis, and it has been studied since the 1950s. Unlike many problems of its kind, MCSP is not known to be NP-hard, yet an efficient algorithm for this problem also seems very unlikely: for example, MCSP in P would imply there are no pseudorandom functions. Although most NP-complete problems are complete under strong "local" reduction notions such as poly-logarithmic time projections, we show that MCSP is provably not NP-hard under O(n^(1/2-epsilon))-time projections, for every epsilon > 0. We prove that the NP-hardness of MCSP under (logtime-uniform) AC0 reductions would imply extremely strong lower bounds: NP notsubset P/poly and E notsubset i.o.-SIZE(2^(delta * n)) for some delta > 0 (hence P = BPP also follows). We show that even the NP-hardness of MCSP under general polynomial-time reductions would separate complexity classes: EXP != NP cap P/poly, which implies EXP != ZPP. These results help explain why it has been so difficult to prove that MCSP is NP-hard. We also consider the nondeterministic generalization of MCSP: the Nondeterministic Minimum Circuit Size Problem (NMCSP), where one wishes to compute the nondeterministic circuit complexity of a given function. We prove that the Sigma_2 P-hardness of NMCSP, even under arbitrary polynomial-time reductions, would imply EXP notsubset P/poly

    Randomness in completeness and space-bounded computations

    Get PDF
    The study of computational complexity investigates the role of various computational resources such as processing time, memory requirements, nondeterminism, randomness, nonuniformity, etc. to solve different types of computational problems. In this dissertation, we study the role of randomness in two fundamental areas of computational complexity: NP-completeness and space-bounded computations. The concept of completeness plays an important role in defining the notion of \u27hard\u27 problems in Computer Science. Intuitively, an NP-complete problem captures the difficulty of solving any problem in NP. Polynomial-time reductions are at the heart of defining completeness. However, there is no single notion of reduction; researchers identified various polynomial-time reductions such as many-one reduction, truth-table reduction, Turing reduction, etc. Each such notion of reduction induces a notion of completeness. Finding the relationships among various NP-completeness notions is a significant open problem. Our first result is about the separation of two such polynomial-time completeness notions for NP, namely, Turing completeness and many-one completeness. This is the first result that separates completeness notions for NP under a worst-case hardness hypothesis. Our next result involves a conjecture by Even, Selman, and Yacobi [ESY84,SY82] which states that there do not exist disjoint NP-pairs all of whose separators are NP-hard via Turing reductions. If true, this conjecture implies that a certain kind of probabilistic public-key cryptosystems is not secure. The conjecture is open for 30 years. We provide evidence in support of a variant of this conjecture. We show that if there exist certain secure one-way functions, then the ESY conjecture for the bounded-truth-table reduction holds. Now we turn our attention to space-bounded computations. We investigate probabilistic space-bounded machines that are allowed to access their random bits {\em multiple times}. Our main conceptual contribution here is to establish an interesting connection between derandomization of such probabilistic space-bounded machines and the derandomization of probabilistic time-bounded machines. In particular, we show that if we can derandomize a multipass machine even with a small number of passes over random tape and only O(log^2 n) random bits to deterministic polynomial-time, then BPTIME(n) ⊆ DTIME(2^{o(n)}). Note that if we restrict the number of random bits to O(log n), then we can trivially derandomize the machine to polynomial time. Furthermore, it can be shown that if we restrict the number of passes to O(1), we can still derandomize the machine to polynomial time. Thus our result implies that any extension beyond these trivialities will lead to an unknown derandomization of BPTIME(n). Our final contribution is about the derandomization of probabilistic time-bounded machines under branching program lower bounds. The standard method of derandomizing time-bounded probabilistic machines depends on various circuit lower bounds, which are notoriously hard to prove. We show that the derandomization of low-degree polynomial identity testing, a well-known problem in co-RP, can be obtained under certain branching program lower bounds. Note that branching programs are considered weaker model of computation than the Boolean circuits
    • …
    corecore