35,791 research outputs found

    Exponential stability of linear continuous time difference systems with multiple delays

    Get PDF
    "Some recent results on exponential stability of linear continuous time difference systems with discrete and distributed delay terms are extended to the case of multiple delays. New sufficient conditions for the exponential stability and exponential estimates for the solutions by using Lyapunov–Krasovskii functionals are derived. Special attention is paid to the case of systems with commensurate discrete and distributed delays.

    Stability Analysis of Integral Delay Systems with Multiple Delays

    Full text link
    This note is concerned with stability analysis of integral delay systems with multiple delays. To study this problem, the well-known Jensen inequality is generalized to the case of multiple terms by introducing an individual slack weighting matrix for each term, which can be optimized to reduce the conservatism. With the help of the multiple Jensen inequalities and by developing a novel linearizing technique, two novel Lyapunov functional based approaches are established to obtain sufficient stability conditions expressed by linear matrix inequalities (LMIs). It is shown that these new conditions are always less conservative than the existing ones. Moreover, by the positive operator theory, a single LMI based condition and a spectral radius based condition are obtained based on an existing sufficient stability condition expressed by coupled LMIs. A numerical example illustrates the effectiveness of the proposed approaches.Comment: 14 page

    Delay-dependent exponential stability of neutral stochastic delay systems (vol 54, pg 147, 2009)

    Get PDF
    In the above titled paper originally published in vol. 54, no. 1, pp. 147-152) of IEEE Transactions on Automatic Control, there were some typographical errors in inequalities. Corrections are presented here

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Delay-dependent exponential stability of neutral stochastic delay systems

    Get PDF
    This paper studies stability of neutral stochastic delay systems by linear matrix inequality (LMI) approach. Delay dependent criterion for exponential stability is presented and numerical examples are conducted to verify the effectiveness of the proposed method
    corecore