36 research outputs found

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200

    Unbounded-error One-way Classical and Quantum Communication Complexity

    Full text link
    This paper studies the gap between quantum one-way communication complexity Q(f)Q(f) and its classical counterpart C(f)C(f), under the {\em unbounded-error} setting, i.e., it is enough that the success probability is strictly greater than 1/2. It is proved that for {\em any} (total or partial) Boolean function ff, Q(f)=⌈C(f)/2⌉Q(f)=\lceil C(f)/2 \rceil, i.e., the former is always exactly one half as large as the latter. The result has an application to obtaining (again an exact) bound for the existence of (m,n,p)(m,n,p)-QRAC which is the nn-qubit random access coding that can recover any one of mm original bits with success probability ≥p\geq p. We can prove that (m,n,>1/2)(m,n,>1/2)-QRAC exists if and only if m≤22n−1m\leq 2^{2n}-1. Previously, only the construction of QRAC using one qubit, the existence of (O(n),n,>1/2)(O(n),n,>1/2)-RAC, and the non-existence of (22n,n,>1/2)(2^{2n},n,>1/2)-QRAC were known.Comment: 9 pages. To appear in Proc. ICALP 200

    Better short-seed quantum-proof extractors

    Get PDF
    We construct a strong extractor against quantum storage that works for every min-entropy kk, has logarithmic seed length, and outputs Ω(k)\Omega(k) bits, provided that the quantum adversary has at most βk\beta k qubits of memory, for any \beta < \half. The construction works by first condensing the source (with minimal entropy-loss) and then applying an extractor that works well against quantum adversaries when the source is close to uniform. We also obtain an improved construction of a strong quantum-proof extractor in the high min-entropy regime. Specifically, we construct an extractor that uses a logarithmic seed length and extracts Ω(n)\Omega(n) bits from any source over \B^n, provided that the min-entropy of the source conditioned on the quantum adversary's state is at least (1−β)n(1-\beta) n, for any \beta < \half.Comment: 14 page

    Exponential Separation of Quantum and Classical Online Space Complexity

    Full text link
    Although quantum algorithms realizing an exponential time speed-up over the best known classical algorithms exist, no quantum algorithm is known performing computation using less space resources than classical algorithms. In this paper, we study, for the first time explicitly, space-bounded quantum algorithms for computational problems where the input is given not as a whole, but bit by bit. We show that there exist such problems that a quantum computer can solve using exponentially less work space than a classical computer. More precisely, we introduce a very natural and simple model of a space-bounded quantum online machine and prove an exponential separation of classical and quantum online space complexity, in the bounded-error setting and for a total language. The language we consider is inspired by a communication problem (the set intersection function) that Buhrman, Cleve and Wigderson used to show an almost quadratic separation of quantum and classical bounded-error communication complexity. We prove that, in the framework of online space complexity, the separation becomes exponential.Comment: 13 pages. v3: minor change

    Short seed extractors against quantum storage

    Full text link
    Some, but not all, extractors resist adversaries with limited quantum storage. In this paper we show that Trevisan's extractor has this property, thereby showing an extractor against quantum storage with logarithmic seed length

    Simultaneous Communication Protocols with Quantum and Classical Messages

    Get PDF
    We study the simultaneous message passing (SMP) model of communication complexity, for the case where one party is quantum and the other is classical. We show that in an SMP protocol that computes some function with the first party sending q qubits and the second sending c classical bits, the quantum message can be replaced by a randomized message of O(qc) classical bits, as well as by a deterministic message of O(q c log q) classical bits. Our proofs rely heavily on earlier results due to Scott Aaronson. In particular, our results imply that quantum-classical protocols need to send Omega(sqrt{n/log n}) bits/qubits to compute Equality on n-bit strings, and hence are not significantly better than classical-classical protocols (and are much worse than quantum-quantum protocols such as quantum fingerprinting). This essentially answers a recent question of Wim van Dam. Our results also imply, more generally, that there are no superpolynomial separations between quantum-classical and classical-classical SMP protocols for functional problems. This contrasts with the situation for relational problems, where exponential gaps between quantum-classical and classical-classical SMP protocols are known. We show that this surprising situation cannot arise in purely classical models: there, an exponential separation for a relational problem can be converted into an exponential separation for a functional problem.Comment: 11 pages LaTeX. 2nd version: author added and some changes to the writin
    corecore