705 research outputs found

    Exponential models by Orlicz spaces and applications

    Get PDF
    We use maximal exponential models to characterize a suitable polar cone in a mathematical convex optimization framework. A financial application of this result is provided, leading to a duality minimax theorem related to portfolio exponential utility maximization

    New results on mixture and exponential models by Orlicz spaces

    Full text link
    New results and improvements in the study of nonparametric exponential and mixture models are proposed. In particular, different equivalent characterizations of maximal exponential models, in terms of open exponential arcs and Orlicz spaces, are given. Our theoretical results are supported by several examples and counterexamples and provide an answer to some open questions in the literature.Comment: Published at http://dx.doi.org/10.3150/15-BEJ698 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Nonparametric Information Geometry

    Full text link
    The differential-geometric structure of the set of positive densities on a given measure space has raised the interest of many mathematicians after the discovery by C.R. Rao of the geometric meaning of the Fisher information. Most of the research is focused on parametric statistical models. In series of papers by author and coworkers a particular version of the nonparametric case has been discussed. It consists of a minimalistic structure modeled according the theory of exponential families: given a reference density other densities are represented by the centered log likelihood which is an element of an Orlicz space. This mappings give a system of charts of a Banach manifold. It has been observed that, while the construction is natural, the practical applicability is limited by the technical difficulty to deal with such a class of Banach spaces. It has been suggested recently to replace the exponential function with other functions with similar behavior but polynomial growth at infinity in order to obtain more tractable Banach spaces, e.g. Hilbert spaces. We give first a review of our theory with special emphasis on the specific issues of the infinite dimensional setting. In a second part we discuss two specific topics, differential equations and the metric connection. The position of this line of research with respect to other approaches is briefly discussed.Comment: Submitted for publication in the Proceedings od GSI2013 Aug 28-30 2013 Pari

    Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation

    Full text link
    Information Geometry generalizes to infinite dimension by modeling the tangent space of the relevant manifold of probability densities with exponential Orlicz spaces. We review here several properties of the exponential manifold on a suitable set E\mathcal E of mutually absolutely continuous densities. We study in particular the fine properties of the Kullback-Liebler divergence in this context. We also show that this setting is well-suited for the study of the spatially homogeneous Boltzmann equation if E\mathcal E is a set of positive densities with finite relative entropy with respect to the Maxwell density. More precisely, we analyse the Boltzmann operator in the geometric setting from the point of its Maxwell's weak form as a composition of elementary operations in the exponential manifold, namely tensor product, conditioning, marginalization and we prove in a geometric way the basic facts i.e., the H-theorem. We also illustrate the robustness of our method by discussing, besides the Kullback-Leibler divergence, also the property of Hyv\"arinen divergence. This requires to generalise our approach to Orlicz-Sobolev spaces to include derivatives.%Comment: 39 pages, 1 figure. Expanded version of a paper presente at the conference SigmaPhi 2014 Rhodes GR. Under revision for Entrop

    Dual Connections in Nonparametric Classical Information Geometry

    Full text link
    We construct an infinite-dimensional information manifold based on exponential Orlicz spaces without using the notion of exponential convergence. We then show that convex mixtures of probability densities lie on the same connected component of this manifold, and characterize the class of densities for which this mixture can be extended to an open segment containing the extreme points. For this class, we define an infinite-dimensional analogue of the mixture parallel transport and prove that it is dual to the exponential parallel transport with respect to the Fisher information. We also define {\alpha}-derivatives and prove that they are convex mixtures of the extremal (\pm 1)-derivatives

    Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem

    Full text link
    We develop the Cauchy theory of the spatially homogeneous inelastic Boltzmann equation for hard spheres, for a general form of collision rate which includes in particular variable restitution coefficients depending on the kinetic energy and the relative velocity as well as the sticky particles model. We prove (local in time) non-concentration estimates in Orlicz spaces, from which we deduce weak stability and existence theorem. Strong stability together with uniqueness and instantaneous appearance of exponential moments are proved under additional smoothness assumption on the initial datum, for a restricted class of collision rates. Concerning the long-time behaviour, we give conditions for the cooling process to occur or not in finite time.Comment: 45 page

    Admissible strategies in semimartingale portfolio selection

    Get PDF
    The choice of admissible trading strategies in mathematical modelling of financial markets is a delicate issue, going back to Harrison and Kreps [HK79]. In the context of optimal portfolio selection with expected utility preferences this question has been the focus of considerable attention over the last twenty years. We propose a novel notion of admissibility that has many pleasant features - admissibility is characterized purely under the objective measure P; each admissible strategy can be approximated by simple strategies using finite number of trading dates; the wealth of any admissible strategy is a supermartingale under all pricing measures; local boundedness of the price process is not required; neither strict monotonicity, strict concavity nor differentiability of the utility function are necessary; the definition encompasses both the classical mean-variance preferences and the monotone expected utility. For utility functions finite on R, our class represents a minimal set containing simple strategies which also contains the optimizer, under conditions that are milder than the celebrated reasonable asymptotic elasticity condition on the utility function.utility maximization; non locally bounded semimartingale; incomplete market; sigma-localization and I-localization; sigma-martingale measure; Orlicz space; convex duality
    • …
    corecore