791 research outputs found

    Exponential improvement in precision for simulating sparse Hamiltonians

    Full text link
    We provide a quantum algorithm for simulating the dynamics of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an exponential improvement over previous methods. Specifically, we show that a dd-sparse Hamiltonian HH acting on nn qubits can be simulated for time tt with precision ϵ\epsilon using O(τlog(τ/ϵ)loglog(τ/ϵ))O\big(\tau \frac{\log(\tau/\epsilon)}{\log\log(\tau/\epsilon)}\big) queries and O(τlog2(τ/ϵ)loglog(τ/ϵ)n)O\big(\tau \frac{\log^2(\tau/\epsilon)}{\log\log(\tau/\epsilon)}n\big) additional 2-qubit gates, where τ=d2Hmaxt\tau = d^2 \|{H}\|_{\max} t. Unlike previous approaches based on product formulas, the query complexity is independent of the number of qubits acted on, and for time-varying Hamiltonians, the gate complexity is logarithmic in the norm of the derivative of the Hamiltonian. Our algorithm is based on a significantly improved simulation of the continuous- and fractional-query models using discrete quantum queries, showing that the former models are not much more powerful than the discrete model even for very small error. We also simplify the analysis of this conversion, avoiding the need for a complex fault correction procedure. Our simplification relies on a new form of "oblivious amplitude amplification" that can be applied even though the reflection about the input state is unavailable. Finally, we prove new lower bounds showing that our algorithms are optimal as a function of the error.Comment: v1: 27 pages; Subsumes and improves upon results in arXiv:1308.5424. v2: 28 pages, minor change

    Parallel Quantum Algorithm for Hamiltonian Simulation

    Full text link
    We study how parallelism can speed up quantum simulation. A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians with good sparse structures, called uniform-structured Hamiltonians, including various Hamiltonians of practical interest like local Hamiltonians and Pauli sums. Given the oracle access to the target sparse Hamiltonian, in both query and gate complexity, the running time of our parallel quantum simulation algorithm measured by the quantum circuit depth has a doubly (poly-)logarithmic dependence polyloglog(1/ϵ)\operatorname{polylog}\log(1/\epsilon) on the simulation precision ϵ\epsilon. This presents an exponential improvement over the dependence polylog(1/ϵ)\operatorname{polylog}(1/\epsilon) of previous optimal sparse Hamiltonian simulation algorithm without parallelism. To obtain this result, we introduce a novel notion of parallel quantum walk, based on Childs' quantum walk. The target evolution unitary is approximated by a truncated Taylor series, which is obtained by combining these quantum walks in a parallel way. A lower bound Ω(loglog(1/ϵ))\Omega(\log \log (1/\epsilon)) is established, showing that the ϵ\epsilon-dependence of the gate depth achieved in this work cannot be significantly improved. Our algorithm is applied to simulating three physical models: the Heisenberg model, the Sachdev-Ye-Kitaev model and a quantum chemistry model in second quantization. By explicitly calculating the gate complexity for implementing the oracles, we show that on all these models, the total gate depth of our algorithm has a polyloglog(1/ϵ)\operatorname{polylog}\log(1/\epsilon) dependence in the parallel setting.Comment: Minor revision. 55 pages, 6 figures, 1 tabl

    Hamiltonian simulation with nearly optimal dependence on all parameters

    Full text link
    We present an algorithm for sparse Hamiltonian simulation whose complexity is optimal (up to log factors) as a function of all parameters of interest. Previous algorithms had optimal or near-optimal scaling in some parameters at the cost of poor scaling in others. Hamiltonian simulation via a quantum walk has optimal dependence on the sparsity at the expense of poor scaling in the allowed error. In contrast, an approach based on fractional-query simulation provides optimal scaling in the error at the expense of poor scaling in the sparsity. Here we combine the two approaches, achieving the best features of both. By implementing a linear combination of quantum walk steps with coefficients given by Bessel functions, our algorithm's complexity (as measured by the number of queries and 2-qubit gates) is logarithmic in the inverse error, and nearly linear in the product τ\tau of the evolution time, the sparsity, and the magnitude of the largest entry of the Hamiltonian. Our dependence on the error is optimal, and we prove a new lower bound showing that no algorithm can have sublinear dependence on τ\tau.Comment: 21 pages, corrects minor error in Lemma 7 in FOCS versio

    Simulating Quantum Dynamics On A Quantum Computer

    Full text link
    We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant because they are the first to have time-complexities that are comparable to the best known methods for simulating time-independent Hamiltonian evolution, given appropriate smoothness criteria on the Hamiltonian are satisfied. We provide a thorough cost analysis of these algorithms that considers discretizion errors in both the time and the representation of the Hamiltonian. In addition, we provide the first upper bounds for the error in Lie-Trotter-Suzuki approximations to unitary evolution operators, that use adaptively chosen time steps.Comment: Paper modified from previous version to enhance clarity. Comments are welcom

    Efficient quantum algorithms for simulating sparse Hamiltonians

    Full text link
    We present an efficient quantum algorithm for simulating the evolution of a sparse Hamiltonian H for a given time t in terms of a procedure for computing the matrix entries of H. In particular, when H acts on n qubits, has at most a constant number of nonzero entries in each row/column, and |H| is bounded by a constant, we may select any positive integer kk such that the simulation requires O((\log^*n)t^{1+1/2k}) accesses to matrix entries of H. We show that the temporal scaling cannot be significantly improved beyond this, because sublinear time scaling is not possible.Comment: 9 pages, 2 figures, substantial revision

    Hamiltonian Simulation by Qubitization

    Full text link
    We present the problem of approximating the time-evolution operator eiH^te^{-i\hat{H}t} to error ϵ\epsilon, where the Hamiltonian H^=(GI^)U^(GI^)\hat{H}=(\langle G|\otimes\hat{\mathcal{I}})\hat{U}(|G\rangle\otimes\hat{\mathcal{I}}) is the projection of a unitary oracle U^\hat{U} onto the state G|G\rangle created by another unitary oracle. Our algorithm solves this with a query complexity O(t+log(1/ϵ))\mathcal{O}\big(t+\log({1/\epsilon})\big) to both oracles that is optimal with respect to all parameters in both the asymptotic and non-asymptotic regime, and also with low overhead, using at most two additional ancilla qubits. This approach to Hamiltonian simulation subsumes important prior art considering Hamiltonians which are dd-sparse or a linear combination of unitaries, leading to significant improvements in space and gate complexity, such as a quadratic speed-up for precision simulations. It also motivates useful new instances, such as where H^\hat{H} is a density matrix. A key technical result is `qubitization', which uses the controlled version of these oracles to embed any H^\hat{H} in an invariant SU(2)\text{SU}(2) subspace. A large class of operator functions of H^\hat{H} can then be computed with optimal query complexity, of which eiH^te^{-i\hat{H}t} is a special case.Comment: 23 pages, 1 figure; v2: updated notation; v3: accepted versio
    corecore