4 research outputs found

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac

    PPM-Decay: A computational model of auditory prediction with memory decay

    Get PDF
    Statistical learning and probabilistic prediction are fundamental processes in auditory cognition. A prominent computational model of these processes is Prediction by Partial Matching (PPM), a variable-order Markov model that learns by internalizing n-grams from training sequences. However, PPM has limitations as a cognitive model: in particular, it has a perfect memory that weights all historic observations equally, which is inconsistent with memory capacity constraints and recency effects observed in human cognition. We address these limitations with PPM-Decay, a new variant of PPM that introduces a customizable memory decay kernel. In three studies—one with artificially generated sequences, one with chord sequences from Western music, and one with new behavioral data from an auditory pattern detection experiment—we show how this decay kernel improves the model’s predictive performance for sequences whose underlying statistics change over time, and enables the model to capture effects of memory constraints on auditory pattern detection. The resulting model is available in our new open-source R package, ppm (https://github.com/pmcharrison/ppm)

    Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    This thesis investigates artificial agents learning to make strategic decisions in imperfect-information games. In particular, we introduce a novel approach to reinforcement learning from self-play. We introduce Smooth UCT, which combines the game-theoretic notion of fictitious play with Monte Carlo Tree Search (MCTS). Smooth UCT outperformed a classic MCTS method in several imperfect-information poker games and won three silver medals in the 2014 Annual Computer Poker Competition. We develop Extensive-Form Fictitious Play (XFP) that is entirely implemented in sequential strategies, thus extending this prominent game-theoretic model of learning to sequential games. XFP provides a principled foundation for self-play reinforcement learning in imperfect-information games. We introduce Fictitious Self-Play (FSP), a class of sample-based reinforcement learning algorithms that approximate XFP. We instantiate FSP with neuralnetwork function approximation and deep learning techniques, producing Neural FSP (NFSP). We demonstrate that (approximate) Nash equilibria and their representations (abstractions) can be learned using NFSP end to end, i.e. interfacing with the raw inputs and outputs of the domain. NFSP approached the performance of state-of-the-art, superhuman algorithms in Limit Texas Hold’em - an imperfect-information game at the absolute limit of tractability using massive computational resources. This is the first time that any reinforcement learning algorithm, learning solely from game outcomes without prior domain knowledge, achieved such a feat

    Exponential Reservoir Sampling for Streaming Language Models

    No full text
    corecore