21,625 research outputs found

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    Robust Randomness Amplifiers: Upper and Lower Bounds

    Get PDF
    A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.Comment: 28 pages. Comments welcom

    Efficient size estimation and impossibility of termination in uniform dense population protocols

    Full text link
    We study uniform population protocols: networks of anonymous agents whose pairwise interactions are chosen at random, where each agent uses an identical transition algorithm that does not depend on the population size nn. Many existing polylog(n)(n) time protocols for leader election and majority computation are nonuniform: to operate correctly, they require all agents to be initialized with an approximate estimate of nn (specifically, the exact value logn\lfloor \log n \rfloor). Our first main result is a uniform protocol for calculating log(n)±O(1)\log(n) \pm O(1) with high probability in O(log2n)O(\log^2 n) time and O(log4n)O(\log^4 n) states (O(loglogn)O(\log \log n) bits of memory). The protocol is converging but not terminating: it does not signal when the estimate is close to the true value of logn\log n. If it could be made terminating, this would allow composition with protocols, such as those for leader election or majority, that require a size estimate initially, to make them uniform (though with a small probability of failure). We do show how our main protocol can be indirectly composed with others in a simple and elegant way, based on the leaderless phase clock, demonstrating that those protocols can in fact be made uniform. However, our second main result implies that the protocol cannot be made terminating, a consequence of a much stronger result: a uniform protocol for any task requiring more than constant time cannot be terminating even with probability bounded above 0, if infinitely many initial configurations are dense: any state present initially occupies Ω(n)\Omega(n) agents. (In particular, no leader is allowed.) Crucially, the result holds no matter the memory or time permitted. Finally, we show that with an initial leader, our size-estimation protocol can be made terminating with high probability, with the same asymptotic time and space bounds.Comment: Using leaderless phase cloc

    Exponential Separation of Quantum Communication and Classical Information

    Full text link
    We exhibit a Boolean function for which the quantum communication complexity is exponentially larger than the classical information complexity. An exponential separation in the other direction was already known from the work of Kerenidis et. al. [SICOMP 44, pp. 1550-1572], hence our work implies that these two complexity measures are incomparable. As classical information complexity is an upper bound on quantum information complexity, which in turn is equal to amortized quantum communication complexity, our work implies that a tight direct sum result for distributional quantum communication complexity cannot hold. The function we use to present such a separation is the Symmetric k-ary Pointer Jumping function introduced by Rao and Sinha [ECCC TR15-057], whose classical communication complexity is exponentially larger than its classical information complexity. In this paper, we show that the quantum communication complexity of this function is polynomially equivalent to its classical communication complexity. The high-level idea behind our proof is arguably the simplest so far for such an exponential separation between information and communication, driven by a sequence of round-elimination arguments, allowing us to simplify further the approach of Rao and Sinha. As another application of the techniques that we develop, we give a simple proof for an optimal trade-off between Alice's and Bob's communication while computing the related Greater-Than function on n bits: say Bob communicates at most b bits, then Alice must send n/exp(O(b)) bits to Bob. This holds even when allowing pre-shared entanglement. We also present a classical protocol achieving this bound.Comment: v1, 36 pages, 3 figure

    Towards Tight Bounds for the Streaming Set Cover Problem

    Full text link
    We consider the classic Set Cover problem in the data stream model. For nn elements and mm sets (mnm\geq n) we give a O(1/δ)O(1/\delta)-pass algorithm with a strongly sub-linear O~(mnδ)\tilde{O}(mn^{\delta}) space and logarithmic approximation factor. This yields a significant improvement over the earlier algorithm of Demaine et al. [DIMV14] that uses exponentially larger number of passes. We complement this result by showing that the tradeoff between the number of passes and space exhibited by our algorithm is tight, at least when the approximation factor is equal to 11. Specifically, we show that any algorithm that computes set cover exactly using (12δ1)({1 \over 2\delta}-1) passes must use Ω~(mnδ)\tilde{\Omega}(mn^{\delta}) space in the regime of m=O(n)m=O(n). Furthermore, we consider the problem in the geometric setting where the elements are points in R2\mathbb{R}^2 and sets are either discs, axis-parallel rectangles, or fat triangles in the plane, and show that our algorithm (with a slight modification) uses the optimal O~(n)\tilde{O}(n) space to find a logarithmic approximation in O(1/δ)O(1/\delta) passes. Finally, we show that any randomized one-pass algorithm that distinguishes between covers of size 2 and 3 must use a linear (i.e., Ω(mn)\Omega(mn)) amount of space. This is the first result showing that a randomized, approximate algorithm cannot achieve a space bound that is sublinear in the input size. This indicates that using multiple passes might be necessary in order to achieve sub-linear space bounds for this problem while guaranteeing small approximation factors.Comment: A preliminary version of this paper is to appear in PODS 201
    corecore